
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

OSGi and Apache Felix 3.0
Beginner’s Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1291010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-38-4

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1

Chapter 1: Quick Intro to Felix and OSGi 7
What is OSGi? 8
The framework layout 10

The functional layers 10
The bundle lifecycle states 12
Bundle wiring 13

The shared service registry 14
Working with bundles 15

Anatomy of a bundle 15
The OSGi headers 16

Mandatory headers 16
Functional headers 17
Information headers 18

Start levels 18
The Start Level Service 18
The active start level 18
Using start levels 20

Apache Felix and sub-projects 21
Summary 24

Chapter 2: Setting Up the Environment 25
Setting up the Felix framework 25

Checking that a JDK is installed 26
Download and unpack the Felix distribution 27

Time for action – downloading and installing Felix 27
What's in the box? 28

Time for action – starting Felix 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Maven2 and Felix 30
Installing Maven2 30
Life-cycles and phases 30
Maven plugins 32
The POM 32
The Felix Maven Plugins 32

Summary 33

Chapter 3: Felix Gogo 35
The Tiny Shell Language 36

Chained execution 36
Variable assignment and referencing 37
Value types 37
Object properties and operations 38
Execution quotes 38
Commands and scopes 39

felix scope commands 39
Listing installed bundles: lb 40
help 40
install 43
update 44
resolve 45
stop and start 45
uninstall 46
refresh 46
headers and inspect 47
which 49
log 50
cd and ls 50
frameworklevel and bundlelevel 52

gogo scope commands 54
echo 54
grep 54
cat 55
tac 56
set 57

Summary 58

Chapter 4: Let's Get Started: The Bookshelf Project 59
A simple Bookshelf project 60

The data inventory tier 61

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

The business logic tier 62
The user interaction tier 63

OSGi, Felix, and... 65
Taking it step-by-step 65
Some conventions 67
Summary 69

Chapter 5: The Book Inventory Bundle 71
Set up the Book Inventory API Bundle project 72
Time for action – setting up the project skeleton 72
Time for action – creating the project POM 73

The Bundle identity 73
More on bundle versions 74
Dependencies 76
Customizing the build 77
Defining the distribution parameters 78

The Book bean interface 79
The Book bean attributes 79

Time for action – creating the Book bean interface 80
The Book Inventory interface 81
Time for action – writing the BookInventory interface 82
Build and deploy the bundle 83
Time for action – building and deploying the bundle 84
Let's implement those interfaces 85
Time for action – creating the POM 85
Time for action – implementing a mutable book 87
Time for action – implementing the mock (memory-stored) Book Inventory 88

The factory method 88
Implementing a mock getGoups() 89
Storing a book 89
Removing a stored book 90
Loading a stored book 90
Implementing the book search 91

Writing the Bundle Activator 94
Time for action – add a dependency to the OSGi Core library 94
Time for action – creating the Activator 95

More on Bundle Contexts 96
Time for action – declaring Bundle-Activator 97
Build and deploy the bundle 97
Summary 98

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 6: Using the OSGi Bundle Repository 99
OBR, the OSGi Bundle Repository 99

The repository XML Descriptor 101
Updating the OBR repository 103

Using the OBR scope commands 103
obr:repos 103
obr:list 104
obr:info 105
obr:deploy 106
obr:source and obr:javadoc 107
Updating bundles in the repository 107

Installing the Book Inventory bundles to Felix 108
Time for action – install the book inventory bundles 108
On dependency management 110
Summary 111

Chapter 7: The Bookshelf: First Stab 113
The Bookshelf Service bundle 113

Define the main Bookshelf Service interfaces 115
Time for action – writing the APIs 116

The Authentication interface 116
The BookshelfService interface 116
Implementing the service 119

Time for action – writing BookshelfServiceImpl 119
Time for action – implementing the service activator 122

Framework service lookup 123
Trying the BookshelfService 126
Time for action – building the bundle 126
Time for action – installing and testing the service 126
Time for action – fulfilling the missing dependency 129
On class visibility 131
Summary 132

Chapter 8: Adding a Command-Line Interface 133
The Apache Felix Gogo Shell Service 134
Time for action – creating the Bookshelf Service TUI bundle 134
Implementing a Gogo Shell Service command 135
Implementing the book:search command 136
Time for action – adding the required dependencies 136
Time for action – writing the BookshelfServiceProxy 137

On Converters 141

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Time for action – implementing a bundle activator 142
Time for action – packaging and installing 143
Time for action – trying out the book:search command 144
Time for action – cleaning up the bookshelf-service activator 146
Implementing the book:add command 147
Time for action – implementing the book-add command 147
Updating an installed bundle 148
Trying the commands 151
Sourcing scripts 153
Time for action – creating a book population script 153
Summary 156

Chapter 9: Improve the Bookshelf Service with iPOJO 157
What is Inversion of Control? 158

The Service Locator pattern 159
The Dependency Injection pattern 159
The Whiteboard pattern 161
The Extender Pattern 161

The iPOJO Felix sub-project 162
Components and instances 163
iPOJO Maven plugin 164

The metadata file 164
Using the plugin 167

Injecting iPOJOs 168
Install the iPOJO service bundle 169

Let iPOJO register the inventory implementation 169
Time for action – creating the iPOJO metadata 170

Update the POM 170
Configure bundle for iPOJO 171
Build and test it 172

The Felix iPOJO Gogo Command bundle 173
ipojo scope commands usage 174

Migrate the bookshelf service 175
Time for action – removing lookups in the service implementation 175
Time for action – writing the bookshelf service iPOJO configuration 177

Update the POM 177
Deploy and check 179

iPOJO using annotations 180
Overview 180
Beginner's annotations 180

@Component 181
@Provides 181

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

@Requires 181
@ServiceProperty 182
@Property 182
@Instantiate 182

Instantiating annotated components 182
Update the text UI bundle 183
Time for action – updating the BookshelfServiceProxyImpl 183
Time for action – writing the iPOJO meta.xml 184
Time for action – updating the POM 185
Summary 187

Chapter 10: Improving the Logging 189
On logging 189

Logging levels 190
Who's listening? 191

The OSGi Log Service 192
The Service end 193
Usage of the Log Service 194
The service provider end 195

Apache Felix Log Service 196
The log command 197

Creating the log helper bundles 198
Time for action – creating the bookshelf-log-api bundle 198
Time for action – creating the log helper implementation 199

Implementing the BookshelfLogHelper service 200
Add logging to the bookshelf-service 201
Time for action – updating the bundle POM 201
Time for action – updating the bookshelf service logging calls 202
Time for action – logging to BookshelfLogHelper 203

Update bookshelf-service-tui dependency 204
Trying it out 205
Using other Log Service implementations 208
Summary 208

Chapter 11: How About a Graphical Interface? 209
The OSGi HTTP Service 209

Component structure 210
Registration of servlets 211

iPOJO and the Whiteboard Extender 212
Http Service implementations 213

The Apache Felix Http Service 213
Time for action – installing the Apache Felix Http Service 214

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

A simple bookshelf web application 214
Time for action – implementing the servlet 215

The iPOJO configuration 216
Implementing the operations 217

Time for action – declaring the parameter constants 217
Time for action – implementing the operations 218
Trying it out 224
Summary 226

Chapter 12: The Web Management Console 227
Getting started 228

Installing the Web Console 228
Time for action – installing commons-fileupload and commons-io 229
Time for action – installing json 229
Time for action – installing and starting the Web Console 231
A quick overview 231

Bundles 232
Log Service 233
OSGi Repository 234
Services 234
Shell 235
System Information 236

Apache Felix iPOJO WebConsole Plugin 236
Summary 238

Chapter 13: Improving the Graphics 239
OSGi Web Containers 240
Pax Web 240
Time for action – installing the Pax Web bundles 241

Uninstall previous http support 241
Install PAX Web bundles 242
Double-check the http service implementation 242

Our bookshelf-webapp 243
Time for action – creating the bookshelf-webapp bundle 244
Web application registration 245
Time for action – setting up the web application bundle 245
Time for action – specifying dependencies 246
Getting a service reference in JSP 247
Time for action – writing the session bean 248

Complete the authentication pages 249

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Time for action – using the service 251
A first smoke test 252
Implement the remaining pages 253
Time for action – implementing the list books by category page 253

A note on JSP imports 254
Time for action – explicit package imports 256

Search with authors 256
Add book 257

Summary 259

Chapter 14: Pitfalls and Troubleshooting 261
Common pitfalls 262

I start my bundle but nothing happens 262
Have you declared your bundle activator in the manifest? 262
Do you have the correct logging level set? 263

I update my bundle, but I can't see any change 263
Are you updating the right bundle? 263
Are you updating the right bundle location? 264
Have you refreshed the bundle dependencies? 264

I refresh my OBR but the bundles don't get updated 264
Is the remote OBR being updated? 265

The artifact JAR I need doesn't have OSGi entries in its manifest 265
Creating the bundle manually 265
Using the BND tool 266

I get a "No impl service available" error with any shell command 267
Re-initialize the environment 267

I get a "No LogReaderService available" error with the log command 267
Do you have a Log Service installed? 268

I can't add/connect to an OBR 268
Is that URL valid? 268
Does the OBR have the right format? 268
Do you need a proxy to access the Internet? 269

I'm getting a "Jsp support is not enabled" error message 269
Did you install JSP support? 269

My JSP can't find a class that it needs 269
Is that class on an exported package? 270
Does the web application bundle import the required class package? 270

Troubleshooting tips 271
How to get debug logs from the Felix Log Service 271
How can remote debugging help 272
Where to get answers online 272

Summary 273

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

Appendix A: Eclipse, Maven, and Felix 275
Productivity tools 276

An Integrated Development Environment 276
A build management system 276

Setting up Eclipse and plugins 277
Maven integration plugin 277
OSGi framework container plugin 278
Choosing the workspace 278
Installing the Eclipse plugins 279

Installing Pax Runner 279
Installing m2clipse 281

Setting up a new Maven project in Eclipse 281
Creating the Maven project 281
Customizing the build process 285

Time for action – completing the project 286
Importing a Maven project into Eclipse 286
Debugging with Eclipse 288

Remote debugging configuration 289
Setting up the remote application 289

Time for action – editing the Felix run script 289
Configuring the IDE for remote debugging 290

Connecting to Felix remotely 292
Set a breakpoint 293
Start the remote debugger 293

Running embedded Felix 294
Configuring embedded Felix 294
Taking it for a ride 295
Adding OBR repositories 296
Starting a test bundle 296

Debugging embedded 297
Summary 298

Appendix B: Where to Go from Here? 299
On declarative services 300
On persistent storage 300
On web services 301
On Java Management Extensions (JMX) 301
Additional topics 302
Summary 302

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[x]

Appendix C: Pop Quiz Answers 303
Chapter 1: Quick intro to Felix and OSGi 303
Chapter 2: Setting up the Environment 303
Chapter 3: Felix Gogo 304
Chapter 5: The Book Inventory Bundle 304
Chapter 6: Using the OSGi Bundle Repository 304
Chapter 7: The Bookshelf: First Stab 305
Chapter 11: How About a Graphical Interface? 305
Chapter 13: Improving the Graphics 305

Index 307

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The OSGi specification is a module system and service platform that implements a complete
and dynamic component model. Wasn't that a complicated definition! So how would you
really use it to practical modular applications? Let this book break down the seemingly
overwhelming OSGi standards for you by explaining Apache Felix's powerful architecture in
a simple and easy-to-understand manner using Apache Felix framework to get you up and
running sooner than you expect.

The OSGi standards have found a wide range of applications in the context of the Enterprise,
Telecommunications, Telematics, Smart Home, E-Health, and Mobile, to name just a
few. Apache Felix is one of the most famous implementations of the OSGi framework
specification. This book introduces OSGi on the simple and extensible Felix framework and
guides the reader from the development environment setup to the troubleshooting of
potential issues, walking them through the development of an OSGi-based application and
explaining relevant software design concepts.

This book starts with an introduction to the OSGi Service Platform, its parts and its
bundle structure. It then walks the reader through the Felix framework's setup and their
development environment. It describes the Felix Framework and how to operate it using
Gogo. This book will teach you everything possible about the practical implementation of
OSGi using the Felix Framework as a launch pad.

The book then kicks off the Bookshelf project, a case study that will be used to progressively
explain the important concepts around OSGi using the Felix framework. The Bookshelf
project feature trail will set the context to explain OSGi headers, the bundle activator, the
bundle context and so on.

As the reader implements the bookshelf step by step, they learn about OBR repositories,
dependency management, and bundle version management with Felix.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Moving ahead, a few more advanced topics are covered, such as using iPOJO for dependency
injection and service registration; then carries onto the implementation of a web-based
graphical interface, first using a simple Servlet, and then building a JSP-based Web
Application Bundle.

OSGi service specifications such as the Log Service, Http Service, and Web Container
are explained. Finally, the book describes some of the common pitfalls during bundle
development and hints on troubleshooting them in Felix.

What this book covers
Chapter 1, Quick intro to OSGi and Felix gives an overview of OSGi and introduces Felix

Chapter 2, Setting up the Environment walks the reader through the pre-requisites needed
for developing as they read.

Chapter 3, Felix Gogo covers the Felix Gogo command-line shell and syntax.

Chapter 4, Let's Get Started: The Bookshelf Project sets the scope of work for the case study
and describes the chapter-by-chapter learning process to achieve it.

Chapter 5, The Book Inventory Bundle starts the case study inventory layer implementation
and covers the basics of integrating with an OSGi framework.

Chapter 6, Using the OSGi Bundle Repository covers OBRs and shows how to use them
to install the bundles developed in Chapter 5.

Chapter 7, The Bookshelf: First Stab continues the case study by laying the business logic
middle tier on top of the inventory layer showing how to get access to and interact with
services from other bundles on the framework.

Chapter 8, Adding a Command-Line Interface adds a first presentation layer to the case study
showing how to extend the Gogo shell with custom commands.

Chapter 9, Improving the Bookshelf Service with iPOJO covers Felix iPOJO and shows how to
use it for registering and injecting services. It also explains some of the major design patterns
used in this context.

Chapter 10, Improving the Logging explains the importance of logging in an application, and
shows how to send logs to an OSGi Log Service implementation.

Chapter 11, How about a Graphical Interface? continues the case study by implementing
a simple servlet-based presentation in an OSGi framework, using the Http Service.

Chapter 12, The Web Management Console provides an overview of the Felix Web
Management Console and takes the reader through the steps to install it.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Chapter 13, Improving the Graphics completes the case study by implementing a JSP Web
Application Bundle and explaining Web Containers in the context of OSGi.

Chapter 14, Pitfalls and Troubleshooting includes a few tips on common issues faced when
writing a bundle and describes a few means to troubleshoot them.

Appendix A, Eclipse, Maven, and Felix is an introduction to some of the productivity tools
available for a Java developer in general and to an OSGi developer in specific. It covers
the combined use of Eclipse as an Integrated Development Environment (IDE) along with
plugins useful in the context of the development of OSGi bundles and Maven 2 as a build
and dependency management system.

Appendix B, Where to Go from Here? provides a few leads on topics that can be
investigated after having mastered the book contents, as well as a few reference sites
to get more information.

What you need for this book
Armed with your background in Java programming, you're expected to develop the case
study as you read the book.

You'll need a computer with access to the Internet to download the (free) software
components that are installed throughout the book which include a Java Development
Kit, the Felix Framework Distribution, Maven 2, and Eclipse Helios.

Many of the additional components will be retrieved and installed by the environment that
will be set up in Chapter 2, Setting up the Environment.

Who this book is for
If you are a Java developer new to OSGi and don't really know where to start from to actually
begin developing applications just pick up this book and discover the ease with which you
can start developing powerful, modular and extensible applications. This book uses the Felix
framework 3.0 as an OSGi service platform implementation, and covers its usage to a level
where it makes you comfortable enough to write your own enterprise-level applications.
This book is aimed at Java developers looking to learn about writing reusable and network
distributable software following the OSGi standards using the famous Felix framework. If you
are a developer who wants to focus on the business logic, and abstract away from the details
of how to integrate with specific systems, then this book is meant for you.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Intro to Felix and OSGi

In the current fast evolving market, service providers need a way to quickly
deploy new services over their networks in a managed manner. The challenge
is to deliver new and updated services to devices over the network, with little or
no disruption to other services provided by those devices.

Furthermore, services may be required to run on a multitude of potential
targets such as embedded systems, home electronics, cable modems, set-top
boxes, media gateways, and so on. A different delivery of this service per target
environment constitutes an expensive overhead that is not necessary.

A universal platform with a common framework and a minimal execution
environment would allow a faster time to market, reducing the component
development and testing time, and thus allowing providers to quickly react
to changes in the market needs.

The OSGi service platform specification aims to address this need by providing
a universal platform on which applications (or bundles) can be downloaded and
plugged into its base framework.

In this book, we will focus on OSGi in the context of the enterprise. Although all
of the concepts introduced also apply to the other environments where OSGi
is used, some of the additional discussions will be more appropriate for an
enterprise service platform.

In this chapter, we will take a quick overview of the OSGi service platform and
how it addresses the current market needs. We will also have a first look at the
Apache Felix implementation and how it fits into the OSGi world.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Intro to Felix and OSGi

[�]

You will:

Take a quick overview of OSGi

Understand the OSGi service platform, its functional layers, and their interaction

Take a deep dive into OSGi bundles, their manifest headers

Understand how bundles are activated on an OSGi platform

Learn about bundle start levels and how they can be used in start-up schema

Get an introduction to the Felix framework

What is OSGi?
Started in 1999 as the Open Services Gateway initiative, the OSGi alliance initially targeted
embedding Java technology for networked home gateways. It has grown into a cross-market
framework for the delivery of services onto a wide variety of devices ranging from customer
premise equipments to cars and mobile phones, and from backend servers to home PCs.

With a widespread adoption by the Open Source community and constant improvement
brought by the big market players that make up the alliance, the applications of this flexible
framework has gained a fast momentum and was greatly improved in the last few releases
of its specifications.

The main benefits of the OSGi framework is the standardized means of deploying and
maintaining its modular system over the network; a modular system that is based on
a non-intrusive, yet powerful set of specifications.

Among the many adopters of OSGi as an application framework in the Open Source
community are Knopflerfish, Equinox (Eclipse), and Felix. We will be working with the
Apache Felix OSGi service platform implementation.

The OSGi Service Platform's Core Specification documents the framework's expected
behavior and also specifies the way its different parts interact, and react to external
requests in order to offer its managed services.

This Core Specification is augmented with a set of service specifications, grouped by target
market, and includes the definition of service interfaces for the common services in that
market, along with specifications on how those services are to behave. Those include:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[�]

The Service Compendium, which contains the specifications of OSGi services
such as:

The Preferences service, which holds bundles' preferences in a
persistent manner

The Event Admin service, which helps bundles communicate through the
exchange of events

The Enterprise Specification focuses on the enterprise side of things such
as distribution, scalability, and so on. The Enterprise expert group is supported by
many of the major players in the Java enterprise market such as IBM, Oracle, and
SAP, to name a few. For more on this, please refer to http://www.osgi.org/
Markets/Enterprise.

We will look more closely at the Log Service and HTTP Service from the Service
Compendium in Chapter 10, Improve the Logging and Chapter 11, How about a
Graphical Interface? respectively.

Moreover, the applications of OSGi extend into other market segments in addition to the
enterprise with the following expert groups:

The Mobile market, which focuses on building a robust and secure platform for
mobile phones, with implementations available for the major mobile operating
systems (such as Android, Windows Mobile, Symbian, Brew, and Linux). For more
on this, please refer to http://www.osgi.org/Markets/Mobile

The Telematics market, which focuses on automotive, railway systems,
shipment tracking, and so on. For more on this, please refer to
http://www.osgi.org/Markets/Telematics

The Smart Home market, which focuses on the adaptation and uses of this universal
platform in the residential context. Applications range from the streaming of
audio and video for entertainment and education, to the monitoring and
management of energy consumption. For more on this, please refer to
http://www.osgi.org/Markets/SmartHome

The E-Health market, which focuses on applications in the field of health
services, with applications in areas such as hospitalization, personal
training programs, or assisted living. For more on this, please refer
to http://www.osgi.org/Markets/EHealth

In short, the applications of OSGi are limitless and with a wide involvement from many
disparate parties. Do you think you can contributing? If yes, you can consider following
one of the previous groups and contribute your experience!

Let's take a look at the layout of an OSGi service platform and understand the way it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Intro to Felix and OSGi

[10]

The framework layout
The modular entity in an OSGi framework is referred to as a bundle. A bundle is a collection
of code, resources, and configuration files that are packaged as a Java ARchive (JAR).

A bundle can be compared to a Web ARchive (WAR) in the context of a web container, or to
an Enterprise ARchive (EAR) in the context of a Java Enterprise Platform. For example, a web
container would inspect the contents of a WAR for configuration, resources, and code that it
needs to publish the web application and manage its lifecycle.

In the OSGi world, the framework focuses on the functionality that's required to operate the
bundle as an entity with a lifecycle and provides code and services. It then communicates
changes to the other components in the framework and the installed bundles.

For example, as we will see in Chapter 13, Improving the Graphics, a web container installed
as a bundle listens to bundles that are installed and grabs those that are identified as web
applications for registration. The web container would be a service published by a bundle
on the framework. In this case, both the web container and the web application are bundles
installed on the framework—one bundle using the other to provide a service.

Such a split of responsibilities (for example, web application publishing and lifecycle
management) offers a greater flexibility in the design of a service platform. It is also
applied within the framework in the organization of its components.

The functional layers
The components in the OSGi framework are grouped into distinct functional layers. Each
layer is responsible for a specific set of tasks related to the integration of the bundle with
the framework. Those layers are explained as follows:

The execution environment layer, which is the bottom layer on which the bundles
live, is selected to fit the underlying hardware or operating system. Two examples of
the common execution environments are CDC-1.1/Foundation-1.1 and JavaSE-1.6.
Others can be found in Table 3.2 of the OSGi Core specification.

The module layer, which is the bundle space, holds the bundles that are installed on
the framework and are managed through the lifecycle layer.

The lifecycle layer manages and keeps track of the frameworks and bundles lifecycle
state. It is used to install or uninstall framework objects and start or stop them.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[1�]

Those states are as follows:

INSTALLED: The bundle has been successfully installed. The framework knows
enough about this bundle to attempt to load it.

RESOLVED: All resources needed for this bundle have been loaded successfully and
the bundle is ready to be started. This is also the state the bundle would be in, once
successfully stopped.

STARTING: The bundle is being started, but has not finished starting.

ACTIVE: The bundle has been successfully activated and is running, ready to
be used.

STOPPING: The bundle is being stopped, but has not finished stopping.

UNINSTALLED: The bundle has been uninstalled. Once uninstalled, nothing can be
done with the module.

As we'll see in Chapter 5, by defining a bundle activator, the framework will temporarily give
the bundle control of the execution flow when it is in the starting and stopping states by
calling the bundle activator's start() and stop() methods.

Unless instructed otherwise (that is, by requesting start or stop in transient mode), the
framework will keep track of whether a bundle is active and attempt to restore that state
at the next startup. When the bundle is started, it is persistently marked for start.

Bundle wiring
Without going into the details of the class loading and visibility constraints, it's worth
knowing that the framework keeps separate codebases for the different bundles, controlling
how each bundle's classes are loaded and which classes a bundle can "see". The process of
linking a bundle to provide its access to another bundle's content is called wiring.

When the framework resolves a bundle for installation, it reads the bundle manifest looking
for its capabilities (the packages it provides or exports) and its requirements (those that it
imports). It uses this information to wire the bundles together in a mesh of dependencies,
thus constructing the class space visible to each bundle.

This mechanism allows each bundle to clearly define which of its packages (and classes) are
hidden from other bundles and which are shared.

For example, if Bundle B exports package b and Bundle C exports package c, then those
packages are made available for bundles that require them on the framework.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Intro to Felix and OSGi

[1�]

The optional OSGI-OPT/ directory can be used to store additional resources that are
not needed for the proper functioning of the bundle: resources such as source code and
additional documentation. The framework may choose to throw this content away, if it
needs to save storage space.

Another standard OSGi directory that can also be present in a bundle archive is the
OSGI-INF/ directory. This is typically used to hold bundle-related configuration and
properties, used by other framework bundles when processing this bundle's registration.
For example, declarative services' configurations may be placed in this directory.

As we'll see in a bit, among the OSGi manifest header entries are directives for which
packages are to be exported and made available to other bundles. The other packages
are private and can only be seen and used within the bundle.

The OSGi headers
The bundle uses its manifest meta-data to provide the framework with identity information,
description of its content, and directives on how the framework should use this content.

When an OSGi framework attempts to resolve a bundle, it will read and process its header
entries. Headers follow strict naming and format rules, the framework will ignore headers
that are unknown.

The remainder of this section quickly covers the OSGi headers, stopping on a few for a more
detailed description. Many of the headers described in the following sections allow optional
parameters, or directives, in their syntax. Those directives are mentioned in some situations,
but may have been omitted for simplicity. It is recommended that you refer to the OSGi Core
Specifications documentation to get the complete syntax description.

Mandatory headers
The minimal set of headers required by an OSGi framework to correctly register a bundle is
the Bundle-ManifestVersion and the Bundle-SymbolicName.

The Bundle-ManifestVersion specifies the version of the manifest header syntax. For
the scope of this book, we're following version 4 of the Core Specifications. This header will
have the value 2:

Bundle-ManifestVersion: 2

Combined with the bundle version, the Bundle-SymbolicName uniquely identifies the
bundle within a framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Although not required, it is recommended that the symbolic name be based on the reverse
domain name of the bundle provider. For example, the Felix Shell Service bundle, a Felix
sub-project which is a project of the Apache Foundation (apache.org), has the symbolic
name org.apache.felix.shell.

The Bundle-SymbolicName may also include optional parameters, or directives, such as
singleton and fragment-attachment, which we won't describe here.

Functional headers
Some headers define the bundle requirement from the service platform, for example, the
Bundle-RequiredExecutionEnvironment declares the list of execution environments
this bundle requires to be present on the platform.

During the wiring process, information provided by headers such as Import-Package and
Export-Package is used to know the capabilities and requirements of the bundle.

For example, the Import-Package header declares the packages that the bundle imports,
that is, the packages that it needs from other bundles. The Require-Bundle header
is used to declare that this bundle imports all packages exported by the specified,
comma-separated, and bundle symbolic names.

The lifecycle layer allows the bundle to take part in the activation process. By providing a
class as a Bundle-Activator. The bundle activator is given the execution control when
(the bundle) is starting. The Bundle-ActivationPolicy specifies whether the framework
should activate the bundle in a lazy manner once started or in an eager manner. Eager
activation is signified by omitting the header.

The Bundle-Version header specifies the version of this bundle. A version is composed of
a major part, optionally followed by a minor, micro, and qualifier parts. Those parts are dot
separated. When not specified, the version of a bundle is set to 0.0.0.

We'll talk a little more about versions in Chapters 4, Let's Get Started: The Bookshelf Project,
and Chapter 5, The Book Inventory bundle.

Fragments are bundles that attach to other bundles, called hosts, to extend their host with
manifest headers and bundle content. They are typically used to add resources such as
localization files, graphical themes, and so on. Fragments declare the host that they wish
to attach with the Fragment-Host header.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Intro to Felix and OSGi

[1�]

Information headers
Other headers are given for information purposes. They provide additional information
to the bundle consumer.

For example, the Bundle-Name and Bundle-Description headers provide a
human-readable name and a short description for the bundle. The Bundle-Category
header tags this bundle with a set of category names. It is a comma-separated list of
category names.

The Bundle-ContactAddress header provides the contact address of the vendor, and the
Bundle-Copyright header contains the copyright specification for the bundle.

Many other information headers have not been listed here. The core specification is a good
place to get a full listing along with a description of their usage.

Start levels
Although this is not necessary with well designed and implemented bundles, there is value
in being able to define a sequence in which bundles are started when starting a service
platform. This is to control the start and stop of groups of installed bundles, stepwise.

The Start Level Service
The Start Level Service on the OSGi framework allows just that—the idea is to assign a
"bundle start level" to each bundle, a non-negative number, and to be able to change the
"active start level" in a stepwise manner in order to control which group of bundles are
active at that time.

The Start Level Service also allows setting an initial bundle start level to be assigned to newly
installed bundles. The default bundle start level is 1. This level can be changed by either
issuing a command to change it (we'll cover this command in Chapter 3, Felix Gogo) or by
changing it in the framework configuration. In Felix, the configuration property to set the
initial bundle start level is:

felix.startlevel.bundle=1

Change this property in conf/config.properties of the installed distribution.

The active start level
For example, in the following diagram, we have a Felix instance with an additional three
bundles installed (bundles A, B, and C). In this example, the installed bundles are given
start level 2 and Bundle C is not started.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[�1]

This diagram does not contain all the bundles that will be used for this case study: some of
them have been hidden to reduce clutter.

The start levels that we'll use to organize the bundles in our study are as follows:

Common Services (level 1), to which are assigned validated common services and
libraries, in addition to the bundles provided as part of the distribution.

Tier 3 Services (level 2), to which are assigned the data access related bundles. In
our case, those will be the Bookshelf Inventory API and the Bookshelf Inventory
Mock Impl bundles.

Tier 2 Services (level 3), to which are assigned application business logic bundles; in
our case, the Bookshelf Service bundle.

Tier 1 Service Providers (level 4), to which are assigned bundles that provide user
interaction services. For example, the Http Service (which we will look at in details
in Chapter 11) is given the start level 4.

Tier 1 Services (level 5), to which are assigned bundles that plug into user
interface providers. For example, a bundle that implements the text UI commands
(in Chapter 8, Adding a command-line interface) is assigned start level 5.

For example, when going through a data migration or cleansing activity; the active start
level is set to 2, which keeps only the inventory bundles active and stops the ones on higher
start levels.

In the case where web-server maintenance is required, going down to active start level 3
is enough.

Apache Felix and sub-projects
Apache Felix is an open-source community effort to implement the OSGi Service Platform
Release 4 Core specification under the Apache license.

Started as an initial codebase donation from the Oscar project (on ObjectWeb), it graduated
from incubation and became a top-level project in 2007. The result is a performant and small
footprint piece of software.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[��]

iPOJO, which (provides) a sophisticated service-oriented component (environment
that simplifies) the development of OSGi bundles by assisting with property
injection and service registration. We will work with iPOJO in Chapter 9.

Maven Bundle Plugin, which improves the bundle developer's experience
by providing automation in the process of bundle creation, thus reducing the
error-prone manual intervention. We will work with the Maven Bundle Plugin
throughout our case study in Chapter 5.

Maven SCR Plugin, which assists the developer's use of declarative services by
automating the creation of metatype descriptors.

OSGi Bundle Repository Service, which simplifies the framework administrator's
task by enabling the connection to remote bundle repositories, the listing of
deployed bundles and their installation onto the framework, also handling the
deployment of their dependencies. We will learn more about the OSGi Bundle
Repository Service and start using it in Chapter 6.

Shell Service, Remote Shell Service, and Shell TUI provide means to interact
with bundles on the framework, locally and remotely, using a simple
command-line console.

Web Console Service provides an extensible, browser-based, graphical
administration console to the framework. We will look closely at the
Web Console in Chapter 12.

Those services, combined with the wide variety of bundles made available by other parties,
constitute a rich selection for the construction of an enterprise application.

Pop Quiz
Let's quickly check what you've learned so far:

1 Which of the following best describes an OSGi bundle?

a. It is an XML file, with headers and properties that describe the bundle

b. It is a service that is registered using the Service layer components

c. It is a Java archive, containing additional headers in its manifest file

2 How would you register an OSGi bundle with the framework?

a. I implement registration code in the main() method

b. I provide properties in the bundle manifest

c. It is detected automatically by the framework

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Intro to Felix and OSGi

[��]

3 What happens if, the active start level being at 4, you set it to 3?

a. All the bundles in level 3 are started

b. All the bundles in level 4 are stopped

c. All the bundles are stopped and those on level 3 are started.

Summary
In this chapter, we have taken a beginner's overview of the OSGi world, skimmed through
some background and history. We have also covered the OSGi Service Platform, its functional
layout, the framework's modular entities, and the structure
of bundles and their life-cycle on the framework.

We've also introduced the Apache Felix project and quickly covered the services
it provides.

By now, you should know:

What OSGi is and the market needs it addresses

How the OSGi Service Platform is laid out and the function of its layers

Understand OSGi bundles, how they are structured, and the way the OSGi Service
Platform recognizes and handles them

Know about the Apache Felix project and its sub-projects

Understand the bundle start levels and the ways you can use them

You have also probably read some more documentation online and have deepened your
understanding of those topics.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Setting Up the Environment

In the previous chapter we covered enough theory. Let's prepare to start our
Bookshelf case study. We will also cover more on the background as we
go along.

But first things first, we need to start by setting up the Felix environment and
the tools that will assist in the development.

In this chapter, we will cover the installation of the Felix Framework and quickly
cover its contents. Then we'll give it a try to make sure it's well installed.

In this chapter, you will:

Prepare the Java development environment

Download the latest Felix distribution and install it

Inspect its contents and understand their purpose

Have a quick introduction to Maven by covering its basic concepts

Learn about the Maven plugins provided by the Felix project

So let's start by downloading and installing the Felix Framework.

Setting up the Felix framework
In this section, we will start by checking whether a compatible Java environment is installed
on your machine. You will then download and set up a Felix framework, which will be our
playground for the coming chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

[28]

3.	 Unzip the downloaded archive to a location of your choice. In my case, I've
chosen: C:\felix\. From this point on, we will refer to this location as the
Felix distribution base directory.

This concludes the installation process! The Felix distribution typically does not require any
additional configuration to run. You can start using it as soon as you've unzipped it. We will
touch on some configuration properties when they may be of interest.

What's in the box?
Let's quickly go through the contents of this distribution and get acquainted with its
directory structure.

Under the Felix home directory, you should have the following:

bin: Contains the main application JAR (felix.jar). This is actually the org.
apache.felix.main bundle renamed to felix.jar for convenience. We will
be starting the framework through this JAR.

bundle: The auto-deploy directory; bundles in this directory are automatically
installed and started at framework startup.

conf: Contains the configuration files. The default configuration is very suitable
for most beginners. As you start looking for more ways to customize your Felix
installation, you may come back to the files in this directory for a fine-tuning of
the configuration.

doc: Contains useful documentation on the install and configuration of the
framework, as well as on the bundles included by default in the distribution's
bundle directory.

After the application is started for the first time, an additional folder will appear:

felix-cache: Contains the framework's local cache of installed bundles and their
information. This folder can be deleted to reset the framework. Doing this will
remove all bundles that have been installed.

We will now start Felix and check its default text user interface.

Time for action – starting Felix
As mentioned a bit earlier, the Felix framework start-up Java class resides in the main bundle,
located in the bin directory of the distribution.

To launch Felix from the distribution base directory, in a command-line shell, run:

C:\felix>java -jar bin/felix.jar

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Its basic principle consists of a set of project 'life-cycles', processes which define the 'phases'
that a project goes through to achieve a final result. For example, building an application or
constructing a documentation website for it are the purposes of two of the life-cycles built
into Maven. Additional life-cycles can also be defined by the user, but this is beyond the
scope of this introduction.

The life-cycle clearly defines the phases that are followed to achieve its purpose. Automating
those steps, executing them without human intervention, limits the human error factor in
the build process, as well as provides confidence in the reproducibility of the final result of
the life-cycle.

The atomic action is the 'goal', which represents a specific task to be performed. A phase
is made of a sequence of goals to be achieved for that phase. The goals that are bound
to a phase are decided based on factors such as the project packaging type or its
configured plugins.

There's a wide range of documentation on the Maven site (http://maven.apache.org/).
Here's a good guide on life-cycles and phases: http://maven.apache.org/guides/
introduction/introduction-to-the-lifecycle.html.

The life-cycles built into Maven are:

The default build life-cycle, which takes the project through the build phases,
(we'll see this in a while)

The clean life-cycle, which takes the project through a cleaning process to remove
items such as temporary files or generated content

The site life-cycle, which steps through the documentation and reporting phases
and generates a project site

For example, some of the main phases defined in the default build life-cycles are:

validate that the project is well defined and all required information is provided

compile the project source code

test the compiled code, using an automated test suite (such as JUnit). Those are
unit code tests that don't require the code to be packaged or deployed

package the code and resources into an artifact, the main deliverable for the
project (a JAR, for example)

integration-test the package, potentially deploying it to a test environment

verify that the package fulfills additional quality checks

install the package locally, making it available to other projects on this system

deploy the package to an integration or release location

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

[32]

Each phase is dependent on the phase before it; for example, in the default build life-cycle,
requesting the deploy phase will take the project through validate, compile, test, and
so on.

Regularly, we will be using the clean and deploy life-cycles to produce a release of our
bundles from a clean start.

Maven plugins
The build life-cycles can be customized using plugins, which are provided by Maven or third-
parties. Plugins can attach to goals or extend them to provide build goals with functionality.
For example, we will be using some of the plugins provided by the Felix project to help with
the OSGi bundle creation process later.

Maven provides a simple way to get the required plugins. When you install it, it comes with
the minimal set of libraries required for it to function. It will then download the additional
JARs it needs from online repositories, based on library identification and classification
information (namely, the group and artifact IDs).

The POM
The description of a project, its identification, and the way it is to be built are defined in its
Project Object Model (POM), an XML file that is the main source of information for Maven. It
contains information such as the group and artifact IDs of the project and the dependencies
it requires. It also contains information such as the developers of the project, its software
configuration management system, where its packaged artifacts are deployed, and so on.

As part of the project identification, the POM holds the project packaging type which
determines which goals are bound to the life-cycle phases. The default packaging type is jar
and there are a few packaging types built-in such as war, ear, and so on. For example, the
package phase will be different for a JAR and for a WAR.

The packaging we will use for our projects is a bundle, which is a custom packaging type
provided by the Bundle Plugin (described in the next section). This will be used by the plugins
that we will configure to generate the manifest headers and package the bundle. You will
learn how to create and configure the POMs for the projects of this case study in Chapter 5.

The Felix Maven Plugins
Felix provides quite a few useful plugins to assist in the build and packaging process:

Bundle Plugin: Based on the BND tool from Peter Kriens, this Maven 2 plugin will
assist in the packaging of bundles based on a few build directives (configuration).
It will also manage a local OSGi Bundle Repository (OBR) and provide distribution
to OBRs (covered in Chapter 6, Using the OSGi Bundle Repository.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

iPOJO Plugin: Used in conjunction with the Bundle plugin. Given an XML metafile, it
will automate the iPOJO-related actions as part of the build process.

junit4osgi Plugin: Integrates the jUnit test framework with the bundle build process.

SCR Plugin: It simplifies the development of bundles by generating necessary
descriptors based on annotations.

We will use the Bundle plugin throughout the case study and start using the iPOJO plugin in
Chapter 9, Improving the Bookshelf service with iPOJO.

Pop quiz
1. What is a life-cycle in Maven terms?

a. It manages the state of bundles in an OSGi framework

b. It defines the phases that contents of a project go through to achieve a purpose
in an automated fashion, such as building the project

c. It is a check-list for developers to follow to remember the steps that are
required for a build

2. What is a POM primarily used for in the build process?

a. It is included with the produced archive as bundle configuration

b. It is included with the produced archive as information on the project

c. It provides Maven with project identification and build instructions

Summary
In this chapter, we've set up our environment for Felix development. Then we started up the
Felix framework to ensure it works. We will cover the commands in Chapter 3. We've also
looked at Maven and the Maven plugins made available by the Felix project.

By now, you should:

Have your development environment ready for use. If you haven't picked an
Integrated Development Environment, check out Appendix A: Eclipse, Maven, and
Felix for a good option

Understand Maven life-cycles, phases and goals, and how plugins play a role in
those life-cycles

Be aware of the Maven plugins provided by the Felix project

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

A request for comments (RFC 147) by Peter Kriens, an attachment to the OSGi
4.2 specifications document early draft, describes a proposed interface for the
processing and launching of commands for the OSGi framework. It defines the
blueprint for a shell service and its language.

The goal behind such an endeavor is to attempt to standardize the way
humans and external systems interact with an OSGi framework using a text
command-based interface. For example, such an interface would be used for
launching, configuring, and controlling the framework using a local or remote
console or scripting without locking an enterprise platform to a specific OSGi
framework implementation.

Felix Gogo, a sub-project of Apache Felix, is an implementation of this early
draft specification. The Gogo shell is included with the Felix Framework
Distribution since version 3.0.

It is worth noting that this specification is not yet part of the official OSGi
specifications, and therefore, may change in the future.

In this chapter, you will:

Learn about the Tiny Shell Language and its syntax

Cover some of the commands provided by Gogo

So let's start with a quick overview of the language.

3

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[�7]

g! grep gogo

line 1

line 2 gogo

line 2 gogo

line 3

^Z

true

Notice that line 2 gogo is repeated right after you have entered it, showing that the grep
statement is running in parallel. It receives the input and processes it right after you enter it.

Variable assignment and referencing
A session variable is assigned a value using the equal character (=) and referenced using its
name preceded with a dollar character ($). For example:

g! var1 = 'this is a string'

this is a string

g! echo $var1

this is a string

The assignment operation returns the assigned value.

Value types
We've seen the string type previously, which is indicated by surrounding text with
single quotes (').

A list is a sequence of terms separated by whitespace characters and is delimited by an
opening and a closing square bracket.

For example:

g! days = [mon tue wed thu fri sat sun]

mon

tue

wed

thu

fri

sat

sun

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

Here the variable, days, was created, assigned the list as a value, and stored in the session.

A map is a list of assignments, the value is assigned to the key using the equal character (=).

For example:

g! sounds = [dog=bark cat=meow lion=roar]

dog bark

cat meow

lion roar

Here, the variable sounds is assigned a map with the preceding key value pairs.

Object properties and operations
The shell uses a mapping process that involves reflection to find the best operation to
perform for a request. We're not going to go into the details of how this happens; instead,
we'll give a few examples of the operations that can be performed. We'll see a few others
as we go along.

In the same session, days and sounds are defined previously to retrieve an entry in the
$days list:

g! $days get 1

tue

To retrieve an entry in the sounds map:

g! $sounds get dog

bark

An example we've seen earlier is the bundles command used when illustrating the piping.
Bundles was mapped to the method getBundles() from the Gogo Runtime bundle
BundleContext instance. Another property of this object that we'll use in the next section
is bundle <id> to get a bundle object instance using getBundle(long).

Execution quotes
Similar to the UNIX back-quote syntax, but providing one that's simpler for a lightweight
parser, the execution quotes are used to return the output of an executed program.

For example:

g!(bundle 1) location

file:/C:/felix/bundle/org.apache.felix.bundlerepository-1.6.2.jar

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[�0]

Listing installed bundles: lb
One of the most frequently used shell commands is the list bundles command (lb), which
gives a listing of the currently installed bundles, showing some information on each of them.

Let's check what's running on our newly installed framework:

g! lb

START LEVEL 1

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

The listing provides the following useful information about each bundle:

Each bundle is given a unique id on install—this ID is used by commands such as
update or uninstall to apply actions on that bundle

The bundle's lifecycle state, which we've introduced in Chapter 1, Quick intro to
Felix and OSGi

The bundle's start level

The bundle's name and version

This command also takes a parameter for filtering the bundles list. For example, to include
only bundles that have 'bundle' in their name:

g! lb bundle

START LEVEL 1

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

help
The help command provides hints on the usage of commands.

When called without any parameters, the help command gives a listing of the
available commands:

g! help

felix:bundlelevel

felix:cd

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[�1]

felix:frameworklevel

felix:headers

felix:help

felix:inspect

felix:install

felix:lb

felix:log

felix:ls

felix:refresh

felix:resolve

felix:start

felix:stop

felix:uninstall

felix:update

felix:which

gogo:cat

gogo:each

gogo:echo

gogo:format

gogo:getopt

gogo:gosh

gogo:grep

gogo:not

gogo:set

gogo:sh

gogo:source

gogo:tac

gogo:telnetd

gogo:type

gogo:until

obr:deploy

obr:info

obr:javadoc

obr:list

obr:repos

obr:source

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[��]

install
The install command is used to instruct Felix to install an external bundle. The syntax is
as follows:

g! help install

install - install bundle using URLs

 scope: felix

 parameters:

 String[] target URLs

Each bundle is located using the URL and is downloaded to the local cache for installation.

Once a bundle is installed, it is given a unique id. This ID is used to refer to this bundle when
using commands such as update or uninstall. For example:

g! install http://www.mysite.com/testbundle-1.0.0.jar

Bundle ID: 7

Here, the bundle I've just installed has the ID 7.

g! lb

START LEVEL 1

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 7|Installed | 1|Test Bundle (1.0.0)

In cases where many bundles are to be installed from the same base URL, you may want
to set a session variable with the common base URL to simplify the task.

For example, instead of executing:

g! install http://site.com/bundle1.jar http://site.com/bundle2.jar

You would write:

g! b = http://site.com

g! install $b/bundle1.jar $b/bundle2.jar

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

update
As newer versions of bundles are released, it is easy to update the installed bundle with
a newer version by using the update command.

The update command takes a bundle ID and an optional source URL as parameters. Its
syntax is:

g! help update

update - update bundle

 scope: felix

 parameters:

 Bundle target bundle

update - update bundle from URL

 scope: felix

 parameters:

 Bundle target bundle

 String URL from where to retrieve bundle

For example:

g! update 7 http://www.mysite.com/testbundle-1.0.1.jar

g!

g! lb

START LEVEL 1

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 7|Installed | 1|Test Bundle (1.0.1)

Notice that the bundle ID remains unchanged.

When a source URL is not provided, the bundle is updated from the same location it was
installed from.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[��]

resolve
The resolve command requests that the framework undergo the resolution process for the
given bundle. Refer to Chapter 1 for a review of the bundle life-cycle stages.

The syntax of this command is as follows:

g! help resolve

resolve - resolve bundles

 scope: felix

 parameters:

 Bundle[] target bundles (can be null or empty)

If no parameter is provided, then the framework will resolve all unresolved bundles. To
resolve specific bundles, the list ids of the bundles to be resolved are passed as parameters.

stop and start
The stop and start commands take a space-separated sequence of bundle IDs to stop or
to start (refer to Chapter 1 for more on the lifecycle of a bundle).

The stop command syntax is as follows:

g! help stop

stop - stop bundles

 scope: felix

 flags:

 -t, --transient stop bundle transiently

 parameters:

 Bundle[] target bundles

Use the -t (or --transient) flag to stop the bundle in transient mode, that is, not saving
its state to the persisted auto-start state. The framework will not remember this bundle as
having been stopped the next time it is restarted.

The start command syntax is similar to the stop command:

g! help start

start - start bundles

 scope: felix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[�7]

The syntax of the refresh command is as follows:

g! help refresh

refresh - refresh bundles

 scope: felix

 parameters:

 Bundle[] target bundles (can be null or empty)

To refresh specific bundles, the ids of those bundles are passed as parameters. Otherwise,
calling refresh with no parameters refreshes all bundles that were updated or uninstalled.

headers and inspect
The headers and inspect commands provide valuable information on how a bundle is
perceived by the framework. The headers command lists the bundle headers in the main
section of the bundle's manifest. Its usage is as follows:

g! help headers

headers - display bundle headers

 scope: felix

 parameters:

 Bundle[] target bundles

For example, to display the headers of the bundle Apache Felix Bundle Repository,
use:

g! headers 1

Apache Felix Bundle Repository (1)

Bnd-LastModified = 1272565441581

Build-Jdk = 1.6.0_17

Built-By = gnodet

Bundle-Activator = org.apache.felix.bundlerepository.impl.Activator

Bundle-Description = Bundle repository service.

Bundle-DocURL = http://felix.apache.org/site/apache-felix-osgi-bundle-
repository.html

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

Bundle-License = http://www.apache.org/licenses/LICENSE-2.0.txt

Bundle-ManifestVersion = 2

Bundle-Name = Apache Felix Bundle Repository

Bundle-Source = http://felix.apache.org/site/downloads.cgi

Bundle-SymbolicName = org.apache.felix.bundlerepository

Bundle-Url = http://felix.apache.org/site/downloads.cgi

Bundle-Vendor = The Apache Software Foundation

Bundle-Version = 1.6.2

Created-By = Apache Maven Bundle Plugin

...

The inspect command displays various information on a bundle's dependencies,
requirements, packages it exports, and so on. Its usage is as follows:

g! help inspect

inspect - inspects bundle dependency information

 scope: felix

 parameters:

 String (package | bundle | fragment | service)

 String (capability | requirement)

 Bundle[] target bundles

The first parameter is the inspection type:

package to inspect package-related information, for example, which packages the
specified bundles import from or export to other bundles

bundle to inspect the requirements or capabilities of the given bundles

fragment to inspect fragment-related information, such as a fragment's host or the
list of hosted fragments

service to inspect the bundles service related information, such as the list
of imported or exported services

The second parameter is the direction of the inspection, with respect to the bundle:

capability to inspect what the specified bundles can give to the platform

requirement to inspect what the specified bundles need from the platform

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[�0]

For example, to know where the bundle Apache Felix Gogo Command loads its
org.apache.felix.bundlerepository.Repository class, use:

g! which 2 org.apache.felix.bundlerepository.Repository

Loaded from: org.apache.felix.bundlerepository [1]

The answer is bundle 1: Apache Felix Bundle Repository. The result shows the bundle
symbolic name and the bundle ID.

log
The log command allows us to peek into the list of the last few log entries. Its usage is
as follows:

g! help log

log - display some matching log entries

 scope: felix

 parameters:

 int maximum number of entries

 String minimum log level [debug | info | warn | error]

log - display all matching log entries

 scope: felix

 parameters:

 String minimum log level [debug | info | warn | error]

The default Felix distribution doesn't come with a log service installed, so running this
command at this point will issue a warning:

g! log debug

Log reader service is unavailable.

We will install one in Chapter 10, Improving the Logging, when we add proper logging to our
case study and also cover its usage in more details at that point.

cd and ls
Some of the commands that are available through this console may read from or write to
files. For example, the grep command can read a file and display the lines that match a given
pattern. It will read the file relative to the shell session working directory. We will look at this
and other file manipulating commands in a short while.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[�1]

The cd and ls commands are very similar to their Unix counterparts.

The cd command is used to display or change the current shell working directory. Its usage
is as follows:

g! help cd

cd - change current directory

 scope: felix

 parameters:

 CommandSession automatically supplied shell session

 String target directory

cd - get current directory

 scope: felix

 parameters:

 CommandSession automatically supplied shell session

When called without parameters, it will display the current working directory.
To change the current directory, pass the target directory as a parameter.

The ls command is used to list the contents of a directory. Its syntax is as follows:

g! help ls

ls - get specified path contents

 scope: felix

 parameters:

 CommandSession automatically supplied shell session

 String path with optionally wild carded file name

ls - get current directory contents

 scope: felix

 parameters:

 CommandSession automatically supplied shell session

The path of the directory to be listed is passed as a parameter. If no parameters are passed,
then the contents of the current working directory are shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

For example, the contents of the current directory are as follows:

g! ls

C:\felix\bin

C:\felix\bundle

C:\felix\conf

C:\felix\DEPENDENCIES

C:\felix\doc

C:\felix\felix-cache

C:\felix\LICENSE

C:\felix\LICENSE.kxml2

C:\felix\NOTICE

C:\felix\run.bat

Changing to a sub-directory:

g! cd bundle

Name bundle

CanonicalPath C:\felix\bundle

Parent C:\felix

Path C:\felix\bundle

AbsoluteFile C:\felix\bundle

AbsolutePath C:\felix\bundle

CanonicalFile C:\felix\bundle

ParentFile C:\felix

frameworklevel and bundlelevel
In Chapter 1, we've covered the start level of the framework and bundles. The
frameworklevel and bundlelevel commands allow us to modify those start levels.

The frameworklevel command is used to get or set the framework's active start level.
Its syntax is as follows:

g! help frameworklevel

frameworklevel - query framework active start level

 scope: felix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[��]

frameworklevel - set framework active start level

 scope: felix

 parameters:

 int target start level

To get the active start level of the framework, use the command without any parameters:

g! frameworklevel

Level is 1

To change it, pass the target start level as a parameter.

The bundle level displays and manipulates the bundle's start levels. Its syntax is:

g! help bundlelevel

bundlelevel - set bundle start level or initial bundle start level

 scope: felix

 flags:

 -i, --setinitial set the initial bundle start level

 -s, --setlevel set the bundle's start level

 parameters:

 int target level

 Bundle[] target identifiers

bundlelevel - query bundle start level

 scope: felix

 parameters:

 Bundle bundle to query

To query the start level of a bundle, use the command with one parameter—the bundle ID:

g! bundlelevel 2

org.apache.felix.gogo.command [2] is level 1

To change the framework's initial bundle start level, use the command with the option
-i set:

g! bundlelevel -i 2

This has set the initial bundle start level to 2 for newly installed bundles.

To change the start level of one or more bundles, use the -s option followed by the target
start level and the list of bundles to modify.

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

gogo scope commands
The commands in the gogo scope provide a few additional tools that are especially useful
when scripting a recurrent set of operations. We will cover some of them here.

echo
The echo command will evaluate its arguments and display the result on the console.
For example:

g! var1 = 'this is'

this is

g! var2 = ' a string'

 a string

g! echo $var1$var2

this is a string

grep
The grep command is used to search the input for lines that match a given pattern; it is very
similar to the Unix grep tool. The input is either standard input, the output of a command
piped to grep, or the contents of files.

The grep command will return false if there were no lines in the input that match the
pattern. It will return true otherwise.

Its usage is as follows:

g! grep -?

grep - search for PATTERN in each FILE or standard input.

Usage: grep [OPTIONS] PATTERN [FILES]

 -? --help show help

 -i --ignore-case ignore case distinctions

 -n --line-number prefix each line with line number within its
input file

 -q --quiet, --silent suppress all normal output

 -v --invert-match select non-matching lines

true

The PATTERN argument is an encoded regular expression (regex) that defines the sequence
of characters that are considered a match. It follows the regex pattern format, defined for
the Java java.util.regex.Pattern class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[��]

You can visit the following for more information on regex:

http://download-llnw.oracle.com/javase/1.5.0/docs/api/java/util/
regex/Pattern.html

For example, to grep the output of the lb command for lines containing the string Apache:

g! lb | grep Apache

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

true

The -i (short for --ignore-case) option makes the pattern not case sensitive, thus
matching both the lowercase and uppercase for a letter.

The -n (or --line-number) option requests that the command include the line number
when printing the results. For example:

g! lb | grep -n Apache

4: 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

5: 2|Active | 1|Apache Felix Gogo Command (0.6.0)

6: 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

7: 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

true

The -q option (also --quiet or --silent) is used to suppress the grep command output.
The command will only return true or false after it is finished with the input. This is
especially useful when using the command for its returned value only (as a loop guard,
for example).

The -v (or --invert-match) is used to show the lines that don't match the pattern
(inverse match). For example:

g! lb | grep -v Apache

START LEVEL 1

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

true

cat
The cat command is used to concatenate files and display their contents on the console. It
takes one or more filenames relative to the current shell session directory (see cd and ls in
the previous section) and displays them.

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

For example, to display the run.bat file we had created at the beginning of this chapter, use
the following:

g! cat run.bat

java -jar bin/felix.jar

Separate the arguments with whitespace to display more than one file sequentially.

tac
The tac command, in a way, is the opposite of the cat command. Here it takes the text
from the standard input and either returns it as a string or as a list for use as input for
another command or writes it to a file.

The syntax is as shown here:

g! tac -?

tac - capture stdin as String or List and optionally write to file.

Usage: tac [-al] [FILE]

 -a --append append to FILE

 -l --list return List<String>

 -? --help show help

The following example makes a list of the input and then gets the second item in the
resulting list.

g! var1 = tac -l ; $var1 get 1

a1

a2

a3

^Z

a2

Notice the use of Ctrl-Z (shows as ^Z on the console display) to terminate user input.

Passing a filename as an argument will create the file and write the input text to it. The -a
or --append option can be used to append to an existing file. For example, this will create a
file from the standard input and display its contents using the cat command:

g! tac test.out ; cat test.out

this is a test, line 1

last line

^Z

this is a test, line 1

last line

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[�7]

The input of the tac command can also be the piped output of another. For example, the
next command will make a backup copy of our test.out file created previously:

g! cat test.out | tac test.out.bak

this is a test, line 1 last line

g!

g! cat test.out.bak

this is a test, line 1

last line

set
The set command is used to inspect session variable information, as well as turn session
tracing on or off.

Help on the usage of the set command can be retrieved as follows:

g! set -?

set - show session variables

Usage: set [OPTIONS] [PREFIX]

 -? --help show help

 -a --all show all variables, including those starting with .

 -x set xtrace option

 +x unset xtrace option

If PREFIX given, then only show variable(s) starting with PREFIX

The -x option is used to turn execution traces on. For example, taking one of the samples
used previously, without setting the xtrace option:

g! var = 'this is a string'

this is a string

g! echo $var

this is a string

When setting the xtrace option, the shell will output a trace message for each command it
will execute and for each result of that command. In this case:

g! set -x

g!

g! var = 'this is a string'

+ var '=' 'this is a string'

www.it-ebooks.info

http://www.it-ebooks.info/

Felix Gogo

[��]

this is a string

g! echo $var

+ echo $var

this is a string

Setting shell execution traces on is especially useful when working on a script (see the
previous source).

Use set +x to turn traces off.

Pop Quiz
Let's test if you remember some of the basics of this chapter with a quick pop quiz.

1. How do you list the installed bundles?

a. ls

b. lb

c. ps

2. How do you shutdown the framework?

a. shutdown

b. exit

c. stop 0

Summary
In this chapter, you have learned about the Gogo command-line language and some of its
commands. By now, you should:

Understand the Gogo command syntax

Know about most of the commands available in the Gogo shell

Know how to get help on the usage of commands

www.it-ebooks.info

http://www.it-ebooks.info/

4
Let's Get Started:

The Bookshelf Project

Practicing while learning is the best way to get started with any technology.
When you work hands-on and apply what you've learned as you go, you pay
more attention to the details. These details may later make the difference
between a smooth working project and one that requires long nights of
debugging.

This book is based on a simple bookshelf service case study that we will
construct step-by-step. The goal, of course, is for you to follow along and learn
as you advance in the chapters.

The bookshelf application will touch on the important features of OSGi,
completing the basics you've covered in the previous chapters, mainly in the
context of the Felix framework as well as using components and services from
other providers.

In this chapter, we will spend some time designing our project, setting its scope
of work, and describing its components layout. By the end of this chapter, you
will know what topics are covered in this book. You can also come back to this
chapter to get a global view of the project plan.

We will:

Describe the bookshelf case study and set the scope of work

Go through a tiered layout of its bundles

Define some of the conventions for the case study bundles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

OSGi, Felix, and...
As this book is focused on OSGi and Felix, it is important to keep a clear separation between
materials that are OSGi-specific and those that are Felix-specific. Recognizing and following
the OSGi-specific directives allows you to develop bundles for any framework that is
OSGi-compliant.

For example, in Chapter 1, Quick Intro to Felix and OSGi, we've looked at the OSGi core
specifications which govern the way an OSGi framework must behave and the rules
required to be followed by the bundles targeted for an OSGi framework.

Felix is an OSGi-compliant service platform implementation. It also provides a selection of
bundles that are OSGi-compliant. The sections having to do with installing and operating
Felix are Felix-specific. However, there are chapters that will discuss bundles provided by
Felix, but that may be used on any other OSGi compliant framework.

For example, the chapters talking about the Log Service and Http Service implementations
will cover bits from OSGi specification as well as ones specific to the Felix implementation.
Understanding which sides are part of the OSGi specification and which parts are
Felix-specific will help when you want to replace the implementation bundle from
one provider to another.

Furthermore, additional hints and discussions around general design-related topics and tools
that help with the development activities apply to a context wider than that on which this
book focuses. They aim to augment the basic integration requirements with ones that may
improve the development experience.

Taking it step-by-step
As mentioned earlier, we will construct this target application in small steps from the bottom
up. At every step, the functionality related to OSGi and to Felix will be introduced and
explained, thus constructing your knowledge base progressively.

In the previous chapters, you took a dive into the OSGi world and got your environment
ready for development by installing the Felix Framework Distribution. Also, you quickly
covered an introduction to the Felix Gogo shell. Your system is thus set.

Here, we've established the scope of work and defined the application blueprint. The rest
of the book will take you through the implementation and testing of the application.

For the first integration with the OSGi framework, to understand how a bundle interacts
with it using bundle activators and the bundle context, we start with the inventory bundles
in Chapter 5, The Book Inventory bundle. Those require no interaction with other bundles
and will be a good start.

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Started: The Bookshelf Project

[66]

Chapter 5 will also cover how to use the Maven build mechanism to simplify the
development of OSGi bundles. It will take you through the definition of a POM for the
bundle, the structure of the project contents, and the execution of the build lifecycle
to deploy it.

Then, after learning about the OBR service, in Chapter 6, Using the OSGi Bundle Repository,
you'll install and start the inventory bundles on the Felix framework and quickly test them.

By then, you would have covered a complete develop-to-test cycle; it's the long "Hello
world" that covers all that you need for a fully validated environment.

As you have no interface to interact with the bundle service yet, the testing is done as part of
the bundle startup in the bundle activator code. This is later removed when shell commands
are implemented for the application in Chapter 8, Adding a Command-Line Interface.

The next step is to learn how to interact with other bundles in the framework. In Chapter 7,
you will implement the bookshelf service, which constitutes the business layer. Then in
Chapter 8, you will add the shell commands of the presentation layer.

The end of Chapter 7 is a milestone in the case study. By that point, you would have covered
most of the OSGi core specification material that's in scope for this book.

By the end of Chapter 8, you would be ready to move to more advanced concepts. In
Chapter 9, dependency injection is introduced with iPOJO. This adds a layer of separation
between our bundles and the framework.

The last part of the book goes into the graphical interface world. It deals with building a simple
servlet in Chapter 11, while introducing the OSGi Http Service and its Felix implementation.

In Chapter 13, you will learn about OSGi Web Containers, which allow the deployment
of Web Application Bundles (WABs) and Web Archives (WARs) and look at the Pax Web
services to provide this functionality.

You will also cover a quick tour of the Felix Web Management Console in Chapter 12, which
provides a graphical management interface to the Felix framework and some of its common
services. We will also look at the iPOJO Web Console Plugins service.

The last chapter, Chapter 14, Pitfalls and Troubleshooting looks into some of the common
pitfalls while developing bundles and ways to troubleshoot and resolve them.

For reference, Appendix A guides you through the use of some of the available tools that
would simplify the development process. We will look at how to use Eclipse, an Integrated
Development Environment (IDE), along with Maven, to develop and debug bundles on the
Felix framework. We will cover how to connect to a remote Felix instance as well as how
to embed a Felix instance into Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Finally, Appendix B will give you a few leads on additional interesting topics that you may
choose to follow after having completed this case study.

But before we get started, let's lay down the naming conventions that will be used for the
bundle projects.

Some conventions
During this case study, we'll create a good deal of bundles for deployment. Here we
will define the common conventions that will be used for identifying the bundles and
organization of the Java code.

As we will see in greater detail in Chapter 5, a bundle is identified by a symbolic name,
associated with a version sequence. It is also, usually, given a name. I have chosen a common
group identifier for all the bundles com.packtpub.felix and a common bundle artifact
base prefix com.packtpub.felix.bookshelf-. The common group identifier will also be
used as the base package for the Java code.

For example, the Book Inventory API bundle would be given the symbolic name
com.packtpub.felix.bookshelf-inventory-api and its Java classes would be
organized under the package com.packt.felix.bookshelf.inventory.api.
Notice the switch from dot to dash separation; this allows a quick visual split between the
group and artifact IDs of the project. In this case, com.packt.felix is the group ID and
bookshelf-inventory-api is the artifact ID.

In regular development contexts, an artifact's version progresses following best practices,
rules that were put in place to transmit information about compatibility between different
versions of a bundle. We'll look at the topic of versioning in greater detail in Chapter 5, but
the following is a quick introduction.

This compatibility information is encoded in three parts of a version string: the major,
minor, and patch level. Typically, a bundle would start with a major version of 0 until it is
first released. While its major version is 0, the interfaces exposed by the bundle are still in
development mode and may undergo any change found to improve them.

When the bundle is released, it is given the version 1.0.0. After this point, changes to the
bundle that do not affect the exposed interfaces impact the patch level of the version. For
example, a bundle with version 1.0.0 undergoes bug fixes that do not affect its interfaces.
This bundle is released with version 1.0.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Started: The Bookshelf Project

[68]

Backward compatible changes to a bundle's interfaces impact the minor version part
and reset the patch level. For example, if a new getter method is added to an interface
in a bundle with version 1.2.1, it would be released with version 1.3.0. In this instance, a
component that had a dependency on this bundle when it had version 1.2.1 can use the
one with version 1.3.0 without requiring any changes to its code.

A change in the major version of a bundle means that the changes to the functionality are
not backwards compatible. This may include removal of methods, changes in the return
types, or an optional bean property that becomes mandatory.

In our context, to make it easier for you to know in which chapter a bundle was last
updated, we will encode the chapter number as the minor version. For example, the
bookshelf-inventory-api bundle is released with version 1.5.0 in Chapter 5.

The following are the bundles we will produce as part of our case study:

com.packt.felix.bookshelf-inventory-api: The Book Inventory API
bundle, released in Chapter 5 with version 1.5.0

com.packt.felix.bookshelf-inventory-impl-mock: The Book Inventory
Mock Implementation bundle, released in Chapter 5 with version 1.5.0, then in
Chapter 9 with version 1.9.0, and finally in Chapter 10 with version 1.10.0

com.packt.felix.bookshelf-service: The Bookshelf Service bundle, released
in Chapter 7 with version 1.7.0, then in Chapter 8 with version 1.8.0, and finally in
Chapter 10 with version 1.10.0

com.packt.felix.bookshelf-service-tui: The Bookshelf Service Text-UI
commands bundle, released in Chapter 8 with versions 1.8.0 and 1.8.1 and then
again in Chapter 9 with version 1.9.0

com.packt.felix.bookshelf-servlet: The Booshelf Servlet bundle, released
in Chapter 12 with version 1.12.0

com.packt.felix.bookshelf-webapp: The Bookshelf Web application bundle,
released in Chapter 13 with version 1.13.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

Summary
One of the most important parts in the preparation of a project is the definition of the
overall design and the setting of a specific scope. In this chapter, we have prepared the
grounds for our bookshelf case study. We have looked at the tiered layout of the application
and the mapping of the different components of the bookshelf case study to the data,
business logic, and presentation tiers.

We have:

Designed the bookshelf case study, describing its components and their mapping
to the data inventory, business logic, and presentation tiers

Set a specific scope for the work to be covered in this book as part of the case study

Laid down a few naming conventions for the bundles that will be produced

Now, it's time to start with the data inventory bundles.

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

The Book Inventory interface will define the Book's storage and look-up
functionality for the bookshelf. It will be the contract that a bundle providing
book inventory functionality must follow.

The interface is designed to allow many possible implementations of the
location where the data is persisted. The goal is to be able to quickly write an
implementation that only stores the books in memory (non-persistent when the
bundle is stopped); then later replaces it with one that stores the data to a file
or to a database.

In this chapter, we will define the Book Inventory API and write a mock
implementation. The mock implementation will store the Book items in
memory. We will also start looking at how bundles are packaged for
installation onto an OSGi framework.

We will:

Create the book inventory API bundle project skeleton

Define the Book bean

Define the Book Inventory API

Package and deploy the bundle

Then we will:

Create the book inventory mock implementation (memory-based)

Package and deploy the new bundle

5

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[7�]

So let's start with the first bundle, namely, the book inventory API bundle.

The accompanying code for this book can be downloaded from:

http://www.packtpub.com/files/code/1384_Code.zip

Set up the Book Inventory API Bundle project
By now, you should have gone through the environment setup. If you've just been reading
through so far, it's a good idea to go back to Chapter 2, Setting up the environment, and set
yourself up for starting the project development.

We'll set up the skeleton of our first bundle, to which we'll add the interface definitions
through this chapter.

Here, we will go through the manual steps for the setup of a bundle—it's always good
to know how to do things without the assistance of tools. Appendix A, Eclipse, Maven, and
Felix, guides you through the steps to automate a lot of the following topics for the same
outcome using Eclipse and its plugins.

Time for action – setting up the project skeleton
Choose a location in your filesystem to home your development activity. I'm working on
a Windows platform and have picked C:\projects\felixbook\sources\ to hold my
projects. We'll call this the case study source directory.

For each new project, we'll create a sub-directory with the name of the bundle. This bundle
is the com.packtpub.felix.bookshelf-inventory-api. So create the following
directory structure under your common directory:

com.packtpub.felix.bookshelf-inventory-api

 └ src

 └ main

 ├ java

 └ resources

The newly created directory com.packtpub.felix.bookshelf-inventory-api is this
project's base directory.

The src/main/java directory will hold our Java sources, the src/main/resources will
contain the other files (resources) that are needed by the java code or the framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[7�]

This file structure adheres to the default Maven settings, we'll use it to keep the project
object model definition simple. If you are bound to use another file structure for your
projects, take a look at the Maven references for the ways to customize the source's layout.

Time for action – creating the project POM
The next step is to create the pom.xml file, which tells Maven and the Felix plugins how
to build this project.

The Project Object Model (POM) is located in the project base directory (in this case, under
com.packtpub.felix.bookshelf-inventory-api).

Create a file named pom.xml. You will edit its contents as we go through their meaning in
the coming sections.

<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

The first part is common to all POMs; it's the XML schema information and the POM
model version.

The Bundle identity
Next comes the project identification; this information will be used in the construction of the
bundle JAR, as well as for referring to it from other projects as a dependency.

The artifactId will be used in the naming of the packaged JAR and will also be used in the
generated manifest metadata as the Bundle-Name:

 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-inventory-api
 </artifactId>
 <version>1.5.0</version>

 <packaging>bundle</packaging>

 <name>Bookshelf Inventory API</name>
 <description>Defines the API for the Bookshelf inventory.
 </description>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[7�]

There are a few factors that may impact compatibility, the main driving logic being the work
required for the integration of the updated bundle. Here are a few examples:

Changing the implementation of a method is typically both forwards and
backwards compatible. The bundle requires regression testing and some
validation end-to-end testing.

Adding a method to an interface is backwards compatible when the third party uses
this interface. However, it is not the case when the third-party extends it, as it will
require development for the integration of the changed bundle.

Making a bean attribute optional when it was mandatory is backwards compatible,
however, the opposite is not.

The above highlights the importance of keeping a close eye on dependencies and their
versions, as well as documenting the usage of each dependency.

As mentioned earlier, in our case, to make the mapping between the released bundles
and the book chapters easier, we will use the chapter number as a minor version for the
bundle. Therefore, the first released version of a bundle will not be 1.0.0. As the changes
made through the chapters are all backwards compatible, this does not break the versioning
schema. However, it provides an easy reference back to the chapter in which this bundle
was released.

Let's go back to our POM now and look at its dependencies section.

Dependencies
The dependencies section of the POM lists the components that this artifact depends on.
It identifies each of those dependencies by specifying their groupId, artifactId,
and version.

The scope of a dependency defines whether the dependency is required at compile time
(default), at runtime, during the unit and integration testing phase (test), whether the
dependency is already available on the target platform (provided), or that the dependency
JAR is explicitly provided on the filesystem (system).

This bundle doesn't have any dependencies yet. Therefore, its dependencies section
is empty:

 <dependencies>
 </dependencies>

Later in this chapter, when working on the inventory implementation, we'll see an example
of a dependencies section that's not empty.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

Customizing the build
We had tagged this project with the bundle packaging in the identification part previously.
This packaging type is a custom packaging (that does not come with the default Maven
distribution). It is defined by the maven-bundle-plugin provided by the Felix project.

The maven-bundle-plugin attaches to some of the goals in the build lifecycle and assists
in the creation of the bundle. For example, it will generate the manifest OSGi headers based
on the analysis of the code and the directives provided in the plugin configuration part of
the POM.

To instruct Maven to use this plugin during the build process, we add it to the build plugins
section in the POM:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.1.0</version>
 <extensions>true</extensions>

The configuration section tells the plugin how to generate the bundle manifest file including
OSGi-related information. Here, the Bundle-Category and Bundle-SymbolicName
are set:

 <configuration>
 <instructions>
 <Bundle-Category>sample</Bundle-Category>
 <Bundle-SymbolicName>${artifactId}
 </Bundle-SymbolicName>

The ${artifact} is Maven's way of requesting the substitute with the value of the
artifactId in this POM.

I've picked sample as the bundle category, but we could have categorized it as inventory
to reflect its purpose. This attribute has no functional impact.

This bundle will provide the com.packtpub.felix.bookshelf.inventory.api
package for export. It will be imported by the inventory implementation and the
bookshelf bundles.

 <Export-Package>
 com.packtpub.felix.bookshelf.inventory.api
 </Export-Package>
 </instructions>

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[7�]

The remoteOBR element provides the plugin with the name of the distribution management
repository (see the following section):

 <remoteOBR>repo-rel</remoteOBR>
 <prefixUrl>
 file:///C:/projects/felixbook/releases
 </prefixUrl>
 </configuration>
 </plugin>

The plugin will update a repository.xml file on that distribution repository and use the
prefixUrl for references to the bundle artifacts.

We'll also keep a tight check on which Java version we're using as this is a good practice
to avoid later integration and deployment issues. The plugin that Maven uses during the
compile phase is the maven-compiler-plugin. Here we configure it to use source
compatibility and to generate bytecode for Java release 1.5; this is similar to using
the -source and -target options of the javac tool.

 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

Defining the distribution parameters
The last item we need to look at in the POM is the definition of the bundle distribution
management section. The distribution management section is used during the deploy
phase of a build and tells Maven where the packaged bundle is to be deployed.

 <distributionManagement>
 <!-- releases repo -->
 <repository>
 <id>repo-rel</id>
 <url>file:///C:/projects/felixbook/releases</url>
 </repository>
 </distributionManagement>
</project>

That's it for the setup of the project POM. Let's move on to the Book bean interface definition.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

Time for action – writing the BookInventory interface
The inventory interface is BookInventory. Package declaration, imports, and Javadocs have
been removed for clarity:

public interface BookInventory
{
 enum SearchCriteria
 {
 ISBN_LIKE,
 TITLE_LIKE,
 AUTHOR_LIKE,
 GROUP_LIKE,
 GRADE_GT,
 GRADE_LT
 }

 Set<String> getCategories();

 MutableBook createBook(String isbn)
 throws BookAlreadyExistsException;;

 MutableBook loadBookForEdit(String isbn)
 throws BookNotFoundException;

 String storeBook(MutableBook book) throws InvalidBookException;

 Book loadBook(String isbn) throws BookNotFoundException;

 void removeBook(String isbn) throws BookNotFoundException;

 Set<String> searchBooks(
 Map<SearchCriteria, String> criteria);
}

The method getCategories gives back the list of book categories.

The method createBook is the factory method. It is used to create a new book for a given
ISBN and throws a BookAlreadyExistsException if a book with that ISBN is already
inventoried. The loadBookForEdit method will retrieve a book that's already created or
throw a BookNotFoundException if the book is not in the inventory.

Both of these methods will return a MutableBook as the intention is to edit the book and
then store it using the storeBook method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[��]

The storeBook method saves changes made to a book. It will check that the book has all
mandatory attributes set and throw an InvalidBookException if it's not the case. It
returns the ISBN of the book that was stored.

The loadBook method loads an existing book, given its ISBN reference. It returns a
read-only Book or throws a BookNotFoundException if no book was previously
stored with this particular ISBN reference.

The removeBook method removes a book from the inventory, based on its ISBN reference,
or throws a BookNotFoundException, if no book was previously stored with this
ISBN reference.

The exceptions are straightforward and are not listed here.

The searchBooks method finds the books in the bookshelf that match a given set of
criteria. It returns the set of ISBNs for the books that match the search criteria. They
are as follows:

ISBN_LIKE to filter on ISBN. For example, "123-%" and "%987", would include
books with ISBN starting with "123-" and ending with "987" respectively

TITLE_LIKE to filter on title

AUTHOR_LIKE to filter on author

CATEGORY_LIKE to filter on book category

RATING_GT to include books with a rating greater than that of a given value

RATING_LT to include books with a rating lesser than that of a given value

For example, if we want to search for all books from "John Doe", which we assigned a grade
higher than 5, we would call:

Map<SearchCriteria, String> criteria =
 new HashMap<SearchCriteria, String>();

crits.put(SearchCriteria.AUTHOR_LIKE, "John Doe");
crits.put(SearchCriteria.GRADE_GT, "5");

Set<String> results = impl.searchBooks(crits);

The Book Inventory API is now ready to be bundled.

Build and deploy the bundle
Let's go through the build process in further detail. It will not be repeated with as many
details for the remaining bundles.

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

Time for action – building and deploying the bundle
Open up a command shell and go to the project base directory (in my case, it's
C:\projects\felixbook\sources\com.packtpub.felixguide.bookshelf-
inventory-api).

Run the following command to first clean the previous build temporary file (in this case,
it's the first build, so there are none), then go through the build lifecycle up to deploy:

mvn clean deploy

The final outcome is the deployment of the bundle artifact to the repository under
file:///C:/projects/felixbook/releases/com/packtpub/felix/com.
packtpub.felix.bookshelf-inventory-api/1.5.0/com.packtpub.felix.
bookshelf-inventory-api-1.5.0.jar and its registration on the repository for
later use.

What just happened?
We've just used Maven to build, package, and deploy our bundle. It's that easy.

The repository it has deployed to is listed in the last parts of the build steps; look for logs
like the following:

...

[INFO] [bundle:deploy]

[INFO] LOCK file:///C:/projects/felixbook/releases/repository.xml

[INFO] Downloading repository.xml

[INFO] Computed bundle uri: file:/C:/projects/felixbook/releases/com/
packtpub/felix/com.packtpub.felix.bookshelf-inventory-api/1.5.0/com.
packtpub.felix.bookshelf-inventory-api-1.5.0.jar

[INFO] Writing OBR metadata

[INFO] Deploying file:/C:/projects/felixbook/releases/com/packtpub/felix/
com.packtpub.felix.bookshelf-inventory-api/1.5.0/com.packtpub.felix.
bookshelf-inventory-api-1.5.0.jar

[INFO] Writing OBR metadata

[INFO] Uploading repository.xml

[INFO] UNLOCK file:///C:/projects/felixbook/releases/repository.xml

[INFO] --

[INFO] BUILD SUCCESSFUL

...

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

This bundle depends on the inventory API bundle. This dependency is declared as:

 <dependencies>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>
 com.packtpub.felix.bookshelf-inventory-api</artifactId>
 <version>1.5.0</version>
 </dependency>
 </dependencies>

A dependency is declared by specifying the groupId, artifactId, and version of the
target library.

The other part that needs to be looked at is the Export-Package header in the instructions
section of the maven-bundle-plugin configuration.

This bundle exports com.packtpub.felix.bookshelf.inventory.impl.mock:

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.1.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-Category>sample</Bundle-Category>
 <Bundle-SymbolicName>${artifactId}
 </Bundle-SymbolicName>
 <Export-Package>
 com.packtpub.felix.bookshelf.inventory.impl.mock

 </Export-Package>
 </instructions>
 <remoteOBR>repo-rel</remoteOBR>
 <prefixUrl>
 file:///C:/projects/felixbook/releases</prefixUrl>
 <ignoreLock>true</ignoreLock>
 </configuration>
 </plugin>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[��]

Implementing a mock getGoups()
In order to have a listing of the categories (without having to go through the whole map
every time), we'll keep a count of the books that are in a category and update that count as
we store and remove books.

 private Map<String, Integer> categories =
 new HashMap<String, Integer>();

 public Set<String> getCategories()
 {
 return this.categories.keySet();
 }

Storing a book
Before storing a book, we first check if its attributes are valid. In our case, the only
requirement is that it has an ISBN set.

We also need to keep track of the category to which it belongs to, to update the categories
cache. This implementation will place books that don't have a set category into the
default category.

 public String storeBook(MutableBook book)
 throws InvalidBookException
 {
 String isbn = book.getIsbn();
 if (isbn == null) {
 throw new InvalidBookException("ISBN is not set");
 }
 this.booksByISBN.put(isbn, book);
 String category = book.getCategory();
 if (category == null) {
 category = DEFAULT_CATEGORY;
 }
 if (this.categories.containsKey(category)) {
 int count = this.categories.get(category);
 this.categories.put(category, count + 1);
 }
 else {
 this.categories.put(category, 1);
 }
 return isbn;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[�0]

Removing a stored book
Removing a stored book is the opposite operation. We remove it from the mapping and
update the categories cache accordingly.

 public void removeBook(String isbn)
 throws BookNotFoundException
 {
 Book book = this.booksByISBN.remove(isbn);
 if (book == null) {
 throw new BookNotFoundException(isbn);
 }
 String category = book.getCategory();
 int count = this.categories.get(category);
 if (count == 1) {
 this.categories.remove(category);
 }
 else {
 this.categories.put(category, count - 1);
 }
 }

Loading a stored book
Since we've carefully designed our BookInventory interface, separating operations
that use a Book from those that use a MutableBook, we are safe to use the same
implementation (MutableBookImpl) for either of them.

In our case, we don't pay any attention to concurrency concerns as they are beyond the
scope of this book and therefore no data locking is implemented when an item is loaded for
edit. When a file- or database-based implementation of this interface is written, consider
adding a lock mechanism to prevent multiple parties from editing a book simultaneously.

 public Book loadBook(String isbn)
 throws BookNotFoundException
 {
 return loadBookForEdit(isbn);
 }

 public MutableBook loadBookForEdit(String isbn)
 throws BookNotFoundException
 {
 MutableBook book = this.booksByISBN.get(isbn);
 if (book == null) {
 throw new BookNotFoundException(isbn);
 }
 return book;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[�1]

Implementing the book search
We're expecting the search functionality to be slow. Remember, this is a mock implementation.
In a database-based implementation, the criteria can be used in turn to specify a filter and
provide a significantly better performance.

 public Set<String> searchBooks(
 Map<SearchCriteria, String> criteria)
 {
 LinkedList<Book> books = new LinkedList<Book>();
 books.addAll(this.booksByISBN.values());

 for (Map.Entry<SearchCriteria, String> criterion
 : criteria.entrySet()) {
 Iterator<Book> it = books.iterator();
 while (it.hasNext()) {
 Book book = it.next();
 switch (criterion.getKey()) {
 case AUTHOR_LIKE:
 if (
 !checkStringMatch(book.getAuthor(), criterion.getValue()))
 {
 it.remove();
 continue;
 }
 break;

The checkStringMatch method will attempt to match the given string attribute to the
given criterion value.

The same matching mechanism is applied for the ISBN, group, and title. The rating matching
uses another set of methods listed further down.

 case ISBN_LIKE:
 if (!checkStringMatch(
 book.getISBN(), criterion.getValue()))
 {
 it.remove();
 continue;
 }
 break;
 case CATEGORY_LIKE:
 if (!checkStringMatch(
 book.getCategory(), criterion.getValue()))
 {

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

 it.remove();
 continue;
 }
 break;
 case TITLE_LIKE:
 if (!checkStringMatch(
 book.getTitle(), criterion.getValue()))
 {
 it.remove();
 continue;
 }
 break;
 case RATING_GT:
 if (!checkIntegerGreater(
 book.getRating(), criterion.getValue()))
 {
 it.remove();
 continue;
 }
 break;
 case RATING_LT:
 if (!checkIntegerSmaller(
 book.getRating(), criterion.getValue()))
 {
 it.remove();
 continue;
 }
 break;
 }
 }
 }

Next, gather the books that match, extract their ISBNs, and return the result to the caller.

 // copy ISBNs
 HashSet<String> isbns = new HashSet<String>();
 for (Book book : books) {
 isbns.add(book.getISBN());
 }
 return isbns;
 }

In a typical implementation, returning the references to items as a result of a search
improves performance, especially when the results returned are many. It saves the
time and resources required to load and transmit the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[��]

The method checkIntegerGreater for checking the rating criterion match is as follows:

 private boolean checkIntegerGreater(int attr, String critVal)
 {
 int critValInt;
 try {
 critValInt = Integer.parseInt(critVal);
 }
 catch (NumberFormatException e) {
 return false;
 }
 if (attr >= critValInt) {
 return true;
 }
 return false;
 }

The method checkIntegerSmaller is similar to the previous one, the difference being the
presence of the compare operator (not listed).

The last missing method is the checkStringMatch method for comparing strings
having a wildcard:

 private boolean checkStringMatch(String attr, String critVal)
 {
 if (attr == null) {
 return false;
 }
 attr = attr.toLowerCase();
 critVal = critVal.toLowerCase();

 boolean startsWith = critVal.startsWith("%");
 boolean endsWith = critVal.endsWith("%");

 if (startsWith && endsWith) {
 if (critVal.length()==1) {
 return true;
 }
 else {
 return attr.contains(
 critVal.substring(1, critVal.length() - 1));
 }
 }
 else if (startsWith) {

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

 return attr.endsWith(critVal.substring(1));
 }
 else if (endsWith) {
 return attr.startsWith(
 critVal.substring(0, critVal.length() - 1));
 }
 else {
 return attr.equals(critVal);
 }
 }
}

Even though we're done with the implementation of the service, we still need to hook it into
the Felix framework and make it available as a service.

Writing the Bundle Activator
To increase flexibility in integrating existing services to an OSGi framework (in general), a
service can be accompanied with a bundle activator, which will get temporary control of
execution during the bundle start and stop, thus performing the necessary tasks such as
registering services.

In this section, we will implement a small bundle activator for our inventory implementation.
It will instantiate and register the service on start and then unregister it on stop.

For that, we will create an implementation of the BundleActivator interface (from the
OSGi Core API) and declare it as our bundle activator in the POM.

Time for action – add a dependency to the OSGi Core library
To make the OSGi Core API available for our bundle, we need to add it as a dependency in
the POM.

 <dependencies>
 <!-- ... -->
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>org.osgi.core</artifactId>
 <version>4.2.0</version>
 </dependency>
 </dependencies>

This will ensure the library is on the classpath when compiling the bundle. We'll come back
to the POM in a bit to declare the Bundle-Activator manifest header.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[��]

Time for action – creating the Activator
Now that the dependency has been added, we can implement the BundleActivator
interface.

We will name our activator BookInventoryMockImplActivator and place it in a different
package (say com.packtpub.felix.bookshelf.inventory.impl.mock.activator)
and declared as a private package to avoid it being exported along with the other classes of
the bundle.

package com.packtpub.felix.bookshelf.inventory.impl.mock.activator;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

import com.packtpub.felix.bookshelf.inventory.api.BookInventory;

public class BookInventoryMonkImplActivator
 implements BundleActivator
{

The bundle activator start() method is invoked at the start of the service and given
a BundleContext reference. This context allows us to register and unregister services
(among other operations).

We will keep the service registration reference to be used when unregistering the service.

 private ServiceRegistration reg = null;

 public void start(BundleContext context) throws Exception {
 System.out.println(
 "\nStarting Book Inventory Mock Impl");
 this.reg = context.registerService(
 BookInventory.class.getName(),
 new BookInventoryMockImpl(), null);
 }

The registerService method is used to make a service available for look-up by other
bundles on the framework. Its parameters are as follows:

String clazz: The class name that will be used to look up the service

Object service: The service to be registered

Dictionary properties: Optional dictionary of properties attached with this
service registration

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

The second parameter in the registerService method can also be a ServiceFactory
object that the framework would use to create an instance of the service.

When the bundle is stopping, the activator stop() method is invoked. We can use the
stored service reference to unget the service.

 public void stop(BundleContext context) throws Exception {
 System.out.println("\nStoping Book Inventory Mock Impl");
 if (this.reg!=null) {
 context.ungetService(reg.getReference());
 this.reg = null;
 }
 }
}

Note that this is not strictly necessary, as all services from a bundle are unregistered by the
framework when the bundle is stopped. However, it's good to know how this is done.

More on Bundle Contexts
The BundleContext can be considered as the proxy that bundles use to interact with the
framework. It allows access to framework functionality such as:

Registering a BundleListener to get framework events. BundleEvents are
fired when:

A bundle is resolved (BundleEvent.RESOLVED)

A bundle is installed (BundleEvent.INSTALLED)

A bundle is about to start (BundleEvent.STARTING)

A bundle has started (BundleEvent.STARTED), among others. Have a look
at the BundleEvent API Docs online for the other events that can be fired
at: (http://www.osgi.org/Specifications/Javadoc).

Registering and retrieving registered services as well as unregistering them

Installing bundles to the framework, listing the installed bundles or a specific bundle

Request for a location (File) to use as persistent storage

The BundleContext object is private to the bundle and can be shared within the bundle.
However, it is not supposed to be shared with other bundles.

This should be enough for this class; let's declare it as the bundle activator in the POM and
then deploy it. We'll try the bundles in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[�7]

Time for action – declaring Bundle-Activator
The last thing that's left is to declare the bundle activator to be added to the bundle
manifest. You also need to declare the package com.packtpub.felix.bookshelf.
inventory.impl.mock.activator as a private package, so that it is made available
for the bundle at runtime, but not visible to other bundles.

Edit the maven-bundle-plugin configuration instructions in the POM build plugins
section and add the Bundle-Activator tag (in bold below). It holds the name of the
bundle activator class.

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-Category>sample</Bundle-Category>
 <Bundle-SymbolicName>
 ${artifactId}</Bundle-SymbolicName>
 <Bundle-Activator>
com.packtpub.felix.bookshelf.inventory.impl.mock.activator.-
BookInventoryMockImplActivator
 </Bundle-Activator>
 <Export-Package>
 com.packtpub.felix.bookshelf.inventory.impl.mock
 </Export-Package>
 <Private-Package>
com.packtpub.felix.bookshelf.inventory.impl.mock.activator
 </Private-Package>
 </instructions>
 <obrRepository>file:/P:/projects/felixbook/dev
 </obrRepository>
 </configuration>
 </plugin>
 </plugins>

That's it!

Build and deploy the bundle
Build this bundle in the same way as we've done for the bookshelf-inventory-api
bundle.

In the next chapter, we'll look into OBRs in greater detail. We'll then see how to install our
bundles onto the Felix framework.

www.it-ebooks.info

http://www.it-ebooks.info/

The Book Inventory Bundle

[��]

Pop quiz
Okay, let's see if you've been following—try answering these questions:

1. Which OSGi interface must you extend when defining a service API in an OSGi
bundle?

a. The Service interface

b. The BundleActivator interface

c. None, I can pick any interface I want

2. How do you deploy a bundle to the OBR repository once it's packaged?

a. I need to fill out a form and submit my bundle

b. Maven does it for me, using the deploy target

c. I have to copy or ftp the bundle to the OBR

3. How do you register a service on an OSGi framework?

a. I deploy it to the OBR repository

b. I register it using a BundleContext

c. I don't need to do anything

Summary
In this chapter, you've created the two bundles of the data inventory tier—the API bundle
and a mock implementation bundle.

You have:

Gone through the steps to manually set up a bundle to be built by Maven making
use of the Felix Maven Bundle Plugin

Created the book inventory API bundle (bookshelf-inventory-api), which
defines the inventory and the book APIs

Written a mock implementation of those APIs
(bookshelf-inventory-impl-mock)

Written a bundle activator for the mock implementation

Built and deployed those bundles to the repository

We're ready to learn how to install those bundles onto Felix, which you will do in the next
chapter, after an introduction to OBRs.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Using the OSGi Bundle Repository

So far, we have mentioned OBRs a few times without really diving into them.
We're now at a point where we need to start using them, so it's time to take
that dive.

In this chapter, we will first have a look at the OBR service in some level of
detail, and then we'll see how we use it to install bundles from a remote
location onto our Felix framework. We'll use the bundles we've created in
Chapter 5, The Book Inventory Bundle, to practice what we've learned.

By the end of this chapter, you will have:

Learned about the OSGi Bundle Repository concepts and the OBR repository
XML file format

Inspected the local releases repository

Installed the bundles from Chapter 5 onto Felix

OBR, the OSGi Bundle Repository
The OSGi Bundle Repository (OBR) is a draft specification from the OSGi alliance for a
service that would allow getting access to a set of remote bundle repositories. Each remote
repository, potentially a front for a federation of repositories, provides a list of bundles
available for download, along with some additional information related to them.

The access to the OBR repository can be through a defined API to a remote service or as a
direct connection to an XML repository file.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

Paremus: http://sigil.codecauldron.org/spring-external.obr and
http://sigil.codecauldron.org/spring-release.obr

Those may be of use later, as a source for the dependencies of your project.

The repository XML Descriptor
We already have an OBR repository available to us, our releases repository. We have
deployed the bookshelf bundles to it in the previous chapter as part of the Maven deploy
phase (file:///C/projects/felixbook/releases/repository.xml).

Typically, you'll rarely need to look into the repository XML file. However, it's a good
validation step when investigating issues with the deploy/install process.

Let's inspect some of its contents:

<repository lastmodified='20100905070524.031'>

Not included above in the automatically created repository file is the optional repository
name attribute.

The repository contains a list of resources that it makes available for download. Here, we're
inspecting the entry for the bundle com.packtpub.felix.bookshelf-inventory-api:

 <resource
 id='com.packtpub.felix.bookshelf-inventory-api/1.4.0'
 symbolicname='com.packtpub.felix.bookshelf-inventory-api'
 presentationname='Bookshelf Inventory API'
 uri='file:/C:/projects/felixbook/releases/com/packtpub/felix/
com.packtpub.felix.bookshelf-inventory-api/1.4.0/com.packtpub.felix.
bookshelf-inventory-api-1.4.0.jar'
 version='1.4.0'>
 <description>
 Defines the API for the Bookshelf inventory.</description>
 <size>7781</size>
 <category id='sample'/>
 <capability name='bundle'>
 <p n='symbolicname'
 v='com.packtpub.felix.bookshelf-inventory-api'/>
 <p n='presentationname' v='Bookshelf Inventory API'/>
 <p n='version' t='version' v='1.4.0'/>
 <p n='manifestversion' v='2'/>
 </capability>
 <capability name='package'>
 <p n='package'

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OSGi Bundle Repository

[102]

 v='com.packtpub.felix.bookshelf.inventory.api'/>
 <p n='version' t='version' v='0.0.0'/>
 </capability>
 <require name='package'
 filter=
'(&(package=com.packtpub.felix.bookshelf.inventory.api))'
 extend='false' multiple='false'
 optional='false'>
 Import package com.packtpub.felix.bookshelf.inventory.api
 </require>
 </resource>

Notice that the bundle location (attribute uri), which points to where the bundle can be
downloaded, relative to the base repository location. The presentationname is used
when listing the bundles and the uri is used to get the bundle when a request to install
it is issued.

Inside the main resource entry tag are further bundle characteristics, a description of its
capabilities, its requirements, and so on.

Although the same information is included in the bundle manifest, it is also included in the
repository XML for quick access during validation of the environment, before the actual
bundle is downloaded.

For example, the package capability elements describe the packages that this
bundle exports:

 <capability name="package">
 <p n="package" v="com.packtpub.felix.bookshelf.inventory.api"/>
 <p n="version" t="version" v="0.0.0"/>
 </capability>

The require elements describe the bundle requirements from the target platform:

 <require extend="false"
 filter="(&(package=com.packtpub.felix.bookshelf.inventory.
api)(version>=0.0.0))"
 multiple="false" name="package" optional="false">
 Import package com.packtpub.felix.bookshelf.inventory.api
 </require>
 </resource>
 <!-- ... –->
</repository>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

The preceding excerpts respectively correspond to the Export-Package and
Import-Package manifest headers.

Each bundle may have more than one entry in the repository XML: an entry for every
deployed version.

Updating the OBR repository
In Chapter 5, we had briefly looked at how to deploy a bundle to a remote repository using
Maven. The Felix Maven Bundle Plugin attaches to the deploy phase to automate the
bundle deployment and the update of the repository.xml file.

Using the OBR scope commands
The Gogo Command bundle registers a set of commands for the interaction with the
OBR service. Those commands allow registering repositories, listing their bundles, and
requesting their download and installation.

Let's look at those commands in detail.

obr:repos
The obr:repos command (repos for short, when there are no name conflicts) allows us
to manage the repositories of the OBR service.

Its usage is as follows:

g! help repos

repos - manage repositories

 scope: obr

 parameters:

 String (add | list | refresh | remove)

 String[] space-delimited list of repository URLs

The repos add operation is used to register repositories with the OBR service. For example,
let's register our releases repository:

g! repos add file:///C:/projects/felixbook/releases/repository.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OSGi Bundle Repository

[104]

Registered repositories are not kept between restarts of the framework. To have repositories
automatically registered at startup, set the property obr.repository.url in the
framework conf/config.properties file. Its value is a space-separated list of
repository URLs.

For example, the default value for this property is the Felix releases repository:

obr.repository.url=http://felix.apache.org/obr/releases.xml

The repos remove operation unregisters a previously added repository.

The repos list operation is used to list the registered repositories, for example:

g! repos list

file:/C:/projects/felixbook/releases/repository.xml

http://felix.apache.org/obr/releases.xml

Here we have the default repository and the one we've just added.

The repos refresh operation will reload the repositories that are passed as a parameter.

obr:list
The obr:list command finds bundles in the registered repositories and displays them.
The search may be constrained by a filter on bundle names.

Its usage is as follows:

g! help list

list - list repository resources

 scope: obr

 flags:

 -v, --verbose display all versions

 parameters:

 String[] optional strings used for name matching

The -v (or --verbose) flag is used to display more information on each bundle, including
all versions and the bundle-symbolic name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

For example, the following lists the bundles in the repository containing the sub-string book
and displays verbose information:

g! list -v book

Bookshelf Inventory API

 [com.packtpub.felix.bookshelf-inventory-api] (1.4.0)

Bookshelf Inventory Impl - Mock

 [com.packtpub.felix.bookshelf-inventory-impl-mock] (1.4.0)

The output was reformatted for clarity.

obr:info
The obr:info command retrieves and displays the information available in the repository
for one or more bundles.

The targeted bundles are passed as a space-separated list, each entry specified by display
name, symbolic name, or bundle ID.

The syntax is as follows:

g! help info

info - retrieve resource description from repository

 scope: obr

 parameters:

 String[] (<bundle-name>

 | <symbolic-name> | <bundle-id>)[@<version>] ...

For example, the following is the repository information of the "Apache Felix Gogo Shell
Runtime" (bundle ID 3):

g! obr:info 3

Apache Felix Gogo Shell Runtime

license: http://www.apache.org/licenses/LICENSE-2.0.txt

symbolicname: org.apache.felix.gogo.runtime

uri: http://repo1.maven.org/maven2/org/apache/felix/gogo/-

 org.apache.felix.gogo.runtime/0.2.0/-

 org.apache.felix.gogo.runtime-0.2.0.jar

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OSGi Bundle Repository

[106]

documentation: http://www.apache.org/

category: [org.apache.felix.gogo]

description: Apache Felix Gogo Shell

size: 58198

presentationname: Apache Felix Gogo Shell Runtime

id: org.apache.felix.gogo.runtime/0.2.0

version: 0.2.0

Requires:

 (&(package=org.osgi.framework))

 (&(package=org.osgi.service.command)(version>=0.2.0))

 (&(package=org.osgi.service.packageadmin))

 (&(package=org.osgi.service.threadio)(version>=0.2.0))

 (&(package=org.osgi.util.tracker))

Capabilities:

 {manifestversion=2, symbolicname=org.apache.felix.gogo.runtime,

 presentationname=Apache Felix Gogo Shell Runtime, version=0.2.0}

 {package=org.osgi.service.command, version=0.2.0}

 {package=org.osgi.service.threadio, version=0.2.0}

obr:deploy
The obr:deploy command is used to download bundles from the repository and install
them onto the Felix instance, with the possibility of optionally starting them.

The command usage is as follows:

g! help deploy

deploy - deploy resource from repository

 scope: obr

 flags:

 -s, --start start deployed bundles

 parameters:

 String[] (<bundle-name>

 | <symbolic-name> | <bundle-id>)[@<version>] ...

The -s (or --start) flag is used to request the start of the bundles that were just installed.

We will use this command in a short while to install and start our Book Inventory API and
implementation bundles.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

Since we've declared the bookshelf inventory API as a dependency of the mock
implementation, we only need to specifically deploy the implementation.

First, we set the initial bundle level to 2 (Tier 3 services), and move the framework level
to that level right away:

g! bundlelevel -i 2

g! frameworklevel 2

Then we use the obr:deploy command to deploy the bookshelf implementation:

g! deploy -s "Bookshelf Inventory Impl - Mock"

Target resource(s):

 Bookshelf Inventory Impl - Mock (1.5.0)

Required resource(s):

 Bookshelf Inventory API (1.5.0)

Deploying...

Starting Book Inventory Mock Impl

done.

The bundle listing now shows the newly installed bundles:

g! lb

START LEVEL 1

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 1|Bookshelf Inventory API (1.5.0)

 6|Active | 1|Bookshelf Inventory Impl - Mock (1.5.0)

Bundles 5 and 6 are those we've just installed and started.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OSGi Bundle Repository

[110]

What just happened?
Alright, this is cool. Let's go back through it step-by-step.

Someone (in this case, it was us) has deployed a bundle onto their OBR. Now this OBR could
be local, as it is here, but could also be hosted online (for example, as is the one for the Felix
releases at http://felix.apache.org/obr/releases.xml).

We have registered our releases OBR with the Bundle Repository service (while we were
looking at the obr:repos add command earlier), which resulted in it now being aware of
the "Bookshelf Inventory API" and the "Bookshelf Implementation - Mock" bundles.

Then we requested the Bundle Repository to start the "Bookshelf Inventory Impl - Mock",
calling it by name. The Bundle Repository retrieves the information relating to that bundle,
namely, the bundle URI, from its cached listing.

However, the inventory mock implementation bundle declares a dependency on the
inventory API. The Bundle Repository matches this dependency with the "Bookshelf
Inventory API" bundle and installs it.

Then, as all the dependencies required for the "Bookshelf Inventory Impl - Mock" bundle
are satisfied, it installs it.

Having specified the -s flag, the installed bundles are started.

When the "Bookshelf Inventory Impl - Mock" bundle is started, its bundle activator's
start() method is called. This is when our message "Starting Book Inventory Mock Impl"
is printed on the standard output.

On dependency management
The example we've just looked at is a simple one, with a shallow level of dependencies; yet it
already shows the value gained from the use of a proper dependency management tool. As
bundles become richer in features, their dependency on other bundles, whether internal or
third party, grows into a complex tree (sometimes a graph with potential cycles).

Keeping a close check on the dependencies of each project reduces the potential issues
relating to the deployment of bundle upgrades. It will save you from lengthy searches for
the missing dependencies—usually in the late hours of the night.

It is recommended to keep a checklist of those dependencies, the versions of each that
have been tested and approved and the version that's currently being used. Also include
their assigned OBR repository URL for quick access when using obr:repos add.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Pop Quiz
1. What is an OBR?

a. It's OSGi's way of storing bundles

b. It's a service for querying repositories hosting OSGi bundles

c. It's a service that manages installed bundles

2. What's the main difference between the felix:install and obr:deploy
commands?

a. There's no difference

b. The main difference is that obr:deploy finds and installs dependencies

c. The main difference is that obr:deploy uses the bundle presentation name

3. How do you install and start a bundle using OBR?

a. I use obr:deploy; it will automatically start the bundle when it's installed

b. I use obr:deploy to install the bundle, then felix:start to start it

c. I use obr:deploy with the -s flag to install and then start the bundle

4. How do you update an OBR repository?

a. I submit a request to the OSGi alliance; they will update it

b. I copy the bundle and then manually update the repository XML file

c. I use the bundle plugin in Maven to update the repository on bundle deploy

Summary
In this chapter, you have learned about OSGi Bundle Repository. You've also looked at:

The OBR service and the repository XML descriptor

How to manage the registered OBR repositories using the obr scope commands

How to find and deploy a bundle from an OBR repository to Felix and update it when
it is modified

Then you have:

Installed the bundles from Chapter 5 to the Felix instance

Next, we're going to implement the first version of the bookshelf service; it is a
proof-of-concept, which we will enrich in subsequent chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

7
The Bookshelf: First Stab

The bookshelf service is the business logic component of our case study. It
will stand as a middle tier between the inventory (or data layer), which we've
implemented in Chapter 4, Let's Get Started: The Bookshelf Project, and the
presentation layer, which we will implement in later chapters.

In this chapter, we will define the service's API and implement it. We will also
create an activator for the service to register it.

Since we do not yet have a presentation layer, we will also make the activator
perform a few test actions on the service at startup to ensure that it's working
as expected.

You will:

Define the BookshelfService interface and implement it

Learn how to get access to a registered service (the inventory service)

Install the bookshelf service bundle onto you Felix framework, running the first test

The Bookshelf Service bundle
In the previous chapters, when we have worked on the Bookshelf Inventory API and mock
implementation, we separated the API bundle from that holding the implementation.

In general, it is a good practice to separate them as it enforces the loose coupling between
components and prevents the developer from making assumptions about the specifics of
the implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[114]

As we've seen, this loose coupling makes it easier to replace the specific implementation
of the API without impacting the components that depend on it

An added benefit is that it limits the strict dependencies to those required by the API bundle.
For example, our bookshelf-inventory-api bundle has no dependencies while the
bookshelf-inventory-impl-mock bundle does. Keeping them separate simplifies the
dependency structure.

However, this separation has the downside of increasing the number of bundles we're
working with. The lose coupling also adds the overhead of identifying the implementation
and installing it separately.

To make the previous points clearer, we will define the API and the implementation in the
same bundle for the Bookshelf Service. This way, you'd have seen both cases in action and
you can choose which one fits your needs best.

Let's start with the boiler-plate project preparation.

Have a go hero – preparing the bookshelf-service project
We've already gone through those steps before for the bookshelf-inventory-api and
bookshelf-inventory-impl-mock bundles. Let's see if you can go through them on
your own. The following is the information that you'll need during your setup.

The bundle identification is:

Group Id: com.packtpub.felix

Artifact Id: com.packtpub.felix.bookshelf-service

Version: 1.7.0

Packaging: bundle

The project will have dependencies to:

com.packtpub.felix.bookshelf-inventory-api (1.5.0)

org.osgi.core (4.2.0)

The Java packages will be:

com.packtpub.felix.bookshelf.service.api for the API interfaces
and classes

com.packtpub.felix.bookshelf.service.impl for the implementation

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[117]

Most of the methods in this interface look a lot like those in the inventory interface.
However, they ask for a valid session ID and hide some of the complexity of the third tier.

 void addBook(
 String session, String isbn, String title,
 String author, String category, int rating)
 throws BookAlreadyExistsException, InvalidBookException;

We chose to hide the MutableBook, for example, and spread its properties as separate
method parameters. Here, this is a choice we have to abstract away from the book
factory method.

Depending on the complexity of the bean at hand, you may choose to use the MutableBook
and Book objects instead. It would be interesting, later, if you tried to expose it and
implement a locking mechanism when a MutableBook is served, thus preventing
edits to the entry until it is released.

The modify book operations are restricted to category and rating attribute updates.

 void modifyBookCategory(
 String session, String isbn, String category)
 throws BookNotFoundException, InvalidBookException;

 void modifyBookRating(String session, String isbn, int rating)
 throws BookNotFoundException, InvalidBookException;

 void removeBook(String session, String isbn)
 throws BookNotFoundException;

 Book getBook(String session, String isbn)
 throws BookNotFoundException;

You may have noticed a difference between the way the inventory API and the bookshelf API
function. For example, the inventory API would expect you to get a book for modification,
then set its category, then save it; while the bookshelf service API makes this operation
available as a single method (modifyBookCategory).

This introduced difference is not necessary; the same update mechanism could have been
replicated at the business layer. It is mainly to show that, even though one may be naturally
inclined to replicate an interface when exposing some of its functionality, this replication is
not a rule. Thought must always be given to the way the client may use this information. In
our case, the methods exposed by the inventory interface are made flexible for a middle tier
using them. Those in the middle tier are made simple for easy client integration.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[118]

Search functionality is provided by category, author, title, and given rating.

 Set<String> searchBooksByCategory(
 String session, String categoryLike);

 Set<String> searchBooksByAuthor(
 String session, String authorLike);

 Set<String> searchBooksByTitle(
 String session, String titleLike);

 Set<String> searchBooksByRating(
 String session, int ratingLower, int ratingUpper);
}

This concludes the BookshelfService interface definition. Next, we move to
its implementation.

Have a go hero – tailor the bundle to your liking
Did you feel that the BookshelfService interface is not exactly the way you would have
implemented it? Or maybe you want to engage your own creativity while going through this
case study?

Before moving onto the implementation of the service, you may want to enrich the interface
and extend the scope of work. The following are a few ideas:

Move the Authentication interface to a separate bundle and implement a proper
authentication bundle. You can also find an existing authentication implementation
for OSGi and redesign that part of the bookshelf service to use it.

Enrich the BookshelfService interface by exposing more search functionality or
adding methods such as:

startedBook(String session, String isbn): void, to tell the
service that the user has just started reading this book

finishedBook(String isbn, int rating): void, to mark this book
as finished and give it a rating and then include some additional search
functions to retrieve books based on those added book attributes

getNotStartedBooks(): List<String>, to search for books not
marked as started

getUnfinishedBooks(): List<String>, to search for books not
marked as finished, and so on

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[120]

The service receives a BundleContext through its constructor, handed to it by the activator
(see later). It will keep a reference of it in order to use it for the BookInventory component
lookup when it needs the inventory functionality.

 public BookshelfServiceImpl(BundleContext context)
 {
 this.context = context;
 }

The login, logout, and checkSession methods are plain mocks, only one set
of credentials is recognized and only one session is supported at a time. Also, no
concurrency checks are made, therefore, we would expect this code to misbehave
in a multi-threaded usage.

 public String login(String username, char[] password)
 throws InvalidCredentialsException
 {
 if ("admin".equals(username) &&
 Arrays.equals(password, "admin".toCharArray()))
 {
 this.sessionId =
 Long.toString(System.currentTimeMillis());
 return this.session;
 }
 throw new InvalidCredentialsException(username);
 }

 public void logout(String sessionId) {
 checkSession(sessionId);
 this.sessionId = null;
 }

The session check is a simple one: we only allow one active session at a time. If the
sessionId is set, it must match the one that's passed, otherwise the check fails.

 public boolean sessionIsValid(String sessionId) {
 return this.sessionId!=null
 && this.sessionId.equals(sessionId);
 }

 protected void checkSession(String sessionId) {
 if (!sessionIsValid(sessionId)) {
 throw new SessionNotValidRuntimeException(sessionId);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[121]

We will call this method before every operation of the bookshelf service.

Let's carry onto the implementation of the BookshelfService methods.

To retrieve a Book from the repository, after session validation, we get an instance of the
inventory service to which we delegate the book load request.

 public Book getBook(String sessionId, String isbn)
 throws BookNotFoundException
 {
 checkSession(sessionId);
 BookInventory inventory = lookupBookInventory();
 return inventory.loadBook(isbn);
 }

The lookupBookInventory method will use the stored context reference to retrieve
the BookInventory service instance from the framework's registered services and then
return it.

 private BookInventory lookupBookInventory() {
 String name = BookInventory.class.getName();
 ServiceReference ref =
 this.context.getServiceReference(name);
 if (ref == null)
 {
 throw new
 BookInventoryNotRegisteredRuntimeException(name);
 }
 return (BookInventory) this.context.getService(ref);
 }

Since we have loose coupling between the bookshelf service and the inventory component,
we need to make sure that there is an implementation registered for the BookInventory
interface. This is why we check if ref is null before using it.

Have a go hero – complete service implementation
You have a general idea about this now, right? How about completing the implementation on
your own?

I've included the methods missing from the implementation of the BookshelfService
below for quick reference:

 public MutableBook getBookForEdit(String sessionId, String isbn)
 throws BookNotFoundException;

 public void addBook(

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[122]

 String sessionId, String isbn, String title,
 String author, String group, int grade)
 throws BookAlreadyExistsException, InvalidBookException;

 public void modifyBookCategory(
 String sessionId, String isbn, String group)
 throws BookNotFoundException, InvalidBookException;

 public void modifyBookRating(
 String sessionId, String isbn, int grade)
 throws BookNotFoundException, InvalidBookException;

 public Set<String> getCategories(String sessionId);

 public void removeBook(String sessionId, String isbn)
 throws BookNotFoundException;

 public Set<String> searchBooksByAuthor(
 String sessionId, String authorLike);

 public Set<String> searchBooksByCategory(
 String sessionId, String categoryLike);

 public Set<String> searchBooksByTitle(
 String sessionId, String titleLike);

 public Set<String> searchBooksByRating(
 String sessionId, int gradeLower, int gradeUpper);
}

We'll get the chance to test some of those in a bit to make sure they're working as expected
before adding the client interaction bits.

But before getting there, we still need to write the bundle activator code.

Time for action – implementing the service activator
The bundle activator for this service is straightforward. We basically register the service with
the framework on start and keep a reference to it for being able to unregister it on stop.

In Chapter 9, The Bookshelf: Second Stab with iPOJO, we'll look at how to declare services
using annotations, and, in some cases, remove the need for an activator altogether.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

It's also useful, for now, to include a part of the code that tests the service, which would be
kicked off at service start. This test code will be removed in the next chapter, in which we'll
add shell service integration and start testing it using the text console.

The package containing the activator class, BookshelfServiceImplActivator, will be
com.packtpub.felix.bookshelf.service.impl.activator:

public class BookshelfServiceImplActivator
 implements BundleActivator
{
 ServiceRegistration reg = null;

 public void start(BundleContext context) throws Exception
 {
 this.reg = context.registerService(
 BookshelfService.class.getName(),
 new BookshelfServiceImpl(context), null);

 testService(context);
 }

 public void stop(BundleContext context) throws Exception {
 if (this.reg!=null) {
 context.ungetService(reg.getReference());
 }
 }

Let's write the testService method now.

Framework service lookup
Since we have not yet implemented any way of interacting with the service, but we still
want to make sure it's working right, we've added a method call that executes on bundle
start—testService(), which will add a few books. Then perform a search and display
the search results on the standard output.

 private void testService(BundleContext context)
 {
 // retrieve service
 String name = BookshelfService.class.getName();
 ServiceReference ref = context.getServiceReference(name);
 if (ref==null) {
 throw new RuntimeException(
 "Service not registered: " + name);
 }
 BookshelfService service =
 (BookshelfService) context.getService(ref);

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[124]

This BookshelfService lookup seems to be unnecessary, because we've just instantiated
the bookshelf service implementation previously. We could have kept a reference to it and
used it. However, this allows you to move this test method to a separate unit testing class
later without changing it.

Let's continue with our test method. So we first login (the credentials will be hardcoded
admin / admin):

 // authenticate and get session
 String sessionId;
 try
 {
 System.out.println("\nSigning in. . .");
 sessionId =
 service.login("admin", "admin".toCharArray());
 }
 catch (InvalidCredentialsException e)
 {
 e.printStackTrace();
 return;
 }

Then we can add a few books using the service interface. The goal of the test is to validate
the addBook and the searchBooksByAuthor methods, so we'll add books with attributes
that fit the purpose.

 // add a few books
 try
 {
 System.out.println("\nAdding books. . .");
 service.addBook(sessionId, "123-4567890100",
 "Book 1 Title", "John Doe", "Group 1", 0);
 service.addBook(sessionId, "123-4567890101",
 "Book 2 Title", "Will Smith", "Group 1", 0);
 service.addBook(sessionId, "123-4567890200",
 "Book 3 Title", "John Doe", "Group 2", 0);
 service.addBook(sessionId, "123-4567890201",
 "Book 4 Title", "Jane Doe", "Group 2", 0);
 }
 catch (BookAlreadyExistsException e)
 {
 e.printStackTrace();
 return;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[126]

Trying the BookshelfService
Let's take our service for a short ride. This will be a test for both the BookshelfService
and BookInventory implementations.

Time for action – building the bundle
Build the bundle and deploy it to the releases repository. Here's a reminder of the build
and deploy command:

mvn clean deploy

...

[INFO] Deploying file:/C:/projects/felixbook/releases/com/packtpub/felix/
com.packtpub.felix.bookshelf-service/1.7.0/com.packtpub.felix.bookshelf-
service-1.7.0.jar

[INFO] Writing OBR metadata

[INFO] Uploading repository.xml

[INFO] UNLOCK file:///C:/projects/felixbook/releases/repository.xml

[INFO] --

[INFO] BUILD SUCCESSFUL

...

If the build is successful, the bundle will be deployed to the releases repository and the
OBR repository file will be updated. Next, we install the bundle to Felix.

Time for action – installing and testing the service
At this stage, we have the following bundles installed:

g! lb

START LEVEL 2

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.4.0)

 6|Active | 2|Bookshelf Inventory Impl - Mock (1.4.0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

And the following repositories registered with the OBR service:

g! repos list

file:/C:/projects/felixbook/releases/repository.xml

http://felix.apache.org/obr/releases.xml

We refresh our releases repository and get the updated list of Bookshelf bundles:

g! repos refresh file:///C:/projects/felixbook/releases/repository.xml

g! list book

Bookshelf Inventory API (1.5.0)

Bookshelf Inventory Impl - Mock (1.5.0)

Bookshelf Service (1.7.0)

Notice that the bundle we've just deployed now appears on the list. We will download,
install, and start the bookshelf service bundle using the obr deploy command.

But before doing that—for the fun of seeing things break, let's stop the book
inventory implementation.

g! stop 6

Stoping Book Inventory Mock Impl

This will make the inventory functionality unavailable when the bookshelf service activator
tries to run the tests.

Now, let's instruct the OBR service to deploy and start the bookshelf service. We're installing
the bookshelf service on start level 3 (Tier 2 services):

g! bundlelevel -i 3

g! frameworklevel 3

g! deploy -s "Bookshelf Service"

Target resource(s):

 Bookshelf Service (1.7.0)

Deploying...

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[128]

Having checked dependencies, it installs the service and attempts to start it. However, when
we start with our test, we attempt to get an instance of the BookInventory service—in
lookupBookInventory()—and this bit fails (I've reformatted the output and hidden most
of the stack trace for clarity):

Signing in. . .

Adding books. . .

ERROR: Resolver: Start error -

 com.packtpub.felix.bookshelf-service

 org.osgi.framework.BundleException:

 Activator start error in bundle

 com.packtpub.felix.bookshelf-service [8].

at org.apache.felix.framework.Felix.activateBundle(Felix.java:1909)

at ...

Caused by: com.packtpub.felix.bookshelf.service.impl.
BookInventoryNotRegisteredRuntimeException:

 BookInventory not registered, looking under:

 com.packtpub.felix.bookshelf.inventory.api.BookInventory

at com.packtpub.felix.bookshelf.service.impl.-

 BookshelfServiceImpl.lookupBookInventory(

 BookshelfServiceImpl.java:53)

at ...

done.

We'll get to fix this later. Let's take a closer look at the first bit of the start operation.

What just happened?
As the bookshelf-service bundle is started, the activator is invoked. It registers the
BookshelfServiceImpl under the class name BookshelfService (fully qualified).
It then kicks off the test operations.

Then the activator requests an implementation of the inventory service API from the
framework. In regular situations, this would provide it with one. However, none is available
on the framework (because we've stopped it).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

Time for action – fulfilling the missing dependency
The lookup for the inventory implementation that we tried to make on startup failed and
caused the failure of the start operation. This is because we had stopped the "Bookshelf
Inventory Impl - Mock" bundle.

Looking at the bundle listing, we find the newly installed bundle in the Resolved state:

g! lb

START LEVEL 3

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.4.0)

 6|Resolved | 2|Bookshelf Inventory Impl - Mock (1.4.0)

 7|Resolved | 3|Bookshelf Service (1.7.0)

Let's start the mock inventory implementation and make it available again:

g! start 6

Starting Book Inventory Mock Impl

Now that the dependency is satisfied, starting the Bookshelf Service should work as follows:

g! start 8

Signing in. . .

Adding books. . .

Searching for books with author like: %Doe

 - Group 2: Book 4 Title from Jane Doe [0]

 - Group 1: Book 1 Title from John Doe [0]

 - Group 2: Book 3 Title from John Doe [0]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

This is a partial flow as the interactions with the BundleContext are not shown.

When you decide to replace this inventory implementation with another one, all you'll need
to do is uninstall the existing implementation and install the new one. The next lookup will
catch the new bundle implementation. The same applies for bundle version upgrades.

On class visibility
Looking up the inventory service from the bookshelf service code gives it access to objects
hosted in another bundle (namely, in the bookshelf-inventory-impl-mock bundle).

This is not of any great impact in this example, however, it is a good idea to keep in mind
that those classes live in different bundles. The wiring made it so that the inventory
implementation classes are visible from the bookshelf service context.

When working on more complex bundles that would need to make use of class or resource
loaders, the bundle codebases and their class loaders are managed by the Felix framework.
It's not always correct to assume that another object's class loader is the same as ours or
that we're in the same class space. Remember to use the methods made available by the
target bundle BundleContext for loading resources from that bundle.

Pop quiz
1. When a bundle is started, it goes through which sequence of states?

a. RESOLVED, INSTALLED, and then STARTED.

b. DOWNLOADED, INSTALLED, and then STARTED.

c. INSTALLED, RESOLVED, STARTING, and then ACTIVE.

2. When are the BundleActivator methods called?

a. When the bundle is starting.

b. When the bundle is stopping.

c. a and b.

www.it-ebooks.info

http://www.it-ebooks.info/

The Bookshelf: First Stab

[132]

Summary
Ok, so by now you know quite a lot about OSGi and bundle development on Felix, and you
are well on your way with the bookshelf project.

In this chapter, you have completed the business logic tier of the case study. You have:

Defined and implemented the BookshelfService interface

Learned how to look up a service on the OSGi framework

Installed the service bundle onto you Felix framework

In the next chapter, we'll look at the Felix Gogo Shell Service, and more specifically, at
how to implement and register our own commands. This will be the first part of the
presentation tier (Tier 1).

www.it-ebooks.info

http://www.it-ebooks.info/

8
Adding a Command-Line Interface

In the previous chapters, we implemented the core functionality of our Bookshelf
service. In a layered architecture, we've implemented the inventory as a memory-
based, non-persistent temporary mock, and added the Bookshelf service on top of
it. However, we don't yet have any way of interacting with our service.

In Chapter 11, How about a Graphical Interface?, we'll implement a graphical
frontend for our service. In the meantime, we'll use a command-line interface
(text UI), which we will put in place here.

As you learned earlier in Chapter 3, Felix Gogo, OSGi does not yet specify how
users are to interact with the framework and its services through a command-
line interface. Such features are left for the different bundle providers to fulfill.
We've looked at the RFC 147 draft proposal and the TSL language. You have also
covered a few of the commands that are provided by the Felix Gogo Shell service.

In this chapter, you will:

Learn about the Apache Felix Gogo Shell Service

Discover how to extend it with your own commands

We will also improve our Bookshelf case study by:

Implementing the Gogo shell commands, namely, book:search and book:add

Removing the temporary test procedures in the bookshelf-service activator

We'll also learn how to:

Update a bundle with a newer version

Write a script for automating frequently repeated tasks

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[136]

It is possible to have more than one method that matches the function name (with different
signatures). The Gogo components will find the best match, based on the command input
by the user.

The BookshelfServiceProxy is the service that we will register; it will hold the methods
that provide the commands. We will first take an end-to-end path with the search
commands and then take it again when implementing the add command.

Implementing the book:search command
The first command we'll implement is the book:search command. Since we've left the part
of the bookshelf-service activator that inserts books to the bookshelf on startup, we
can test the search command right away.

Time for action – adding the required dependencies
Right now, let's look at the required dependencies. As we go through them, we will add them
into the dependencies section of the com.packpub.felix.bookshelf-service-tui
project descriptor: pom.xml.

For this functionality, we will need to use the Descriptor annotation, which is provided by the
the org.apache.felix.gogo.runtime bundle:

 <dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>org.apache.felix.gogo.runtime</artifactId>
 <version>0.6.0</version>
 </dependency>

We will also need to register the implemented command as a service, by implementing a
BundleActivator, which is provided by the org.osgi.core bundle:

 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>org.osgi.core</artifactId>
 <version>4.2.0</version>
 <scope>provided</scope>
 </dependency>

The book search functionality is provided by the com.packpub.felix.bookshelf-
service bundle:

 <dependency>
 <groupId>com.packpub.felix</groupId>
 <artifactId>com.packpub.felix.bookshelf-service</artifactId>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[137]

 <version>1.7.0</version>
 <scope>compile</scope>
 </dependency>

The two flavors of the search command will return a set of Books, which are defined in the
com.packpub.felix.bookshelf-inventory-api bundle:

 <dependency>
 <groupId>com.packpub.felix</groupId>
 <artifactId>
 com.packpub.felix.bookshelf-inventory-api</artifactId>
 <version>1.5.0</version>
 </dependency>
 </dependencies>

We're now ready to start the search command implementation.

Time for action – writing the BookshelfServiceProxy
I've chosen the package com.packtpub.felix.bookshelf.service.tui for the
proxy and com.packtpub.felix.bookshelf.service.tui.activator for the
bundle activator.

The BookshelfServiceProxy is the main class for the bookshelf command functionality.
For easy reference, we will define the SCOPE and FUNCTIONS constants that define the
commands scope ("book") and the functions that are to be exposed. Currently, we will
expose one function for the add command:

public class BookshelfServiceProxy
{
 public static final String SCOPE = "book";

 public static final String[] FUNCTIONS = new String[] {
 "search"
 };

 private BundleContext context;

 public BookshelfServiceProxy(BundleContext context)
 {
 this.context = context;
 }

The proxy constructor also takes a BundleContext, which will be needed to look up the
BookshelfService when executing the command operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[138]

The search commands that are exposed have two possible syntax signatures:

search <username> <password> <attribute> <filter>: For searches
matching books filtering by "author", "title" or "category" attribute

search <username> <password> <attribute> <lower> <upper>: For
searches matching books with a "rating" attribute between lower and upper

Each one of these signatures matches a method in the proxy class:

Set<Book> search(String username, String password,
 String attribute, String filter)

Set<Book> search(String username, String password,
 String attribute, int lower, int upper)

The @Descriptor annotation provides additional information on the method and its
parameters. Here, for example, we provide some help on the search command and include a
hint on each parameter it takes:

 @Descriptor("Search books by author, title, or category")
 public Set<Book> search(
 @Descriptor("username") String username,
 @Descriptor("password") String password,
 @Descriptor(
 "search on attribute: author, title, or category")
 String attribute,
 @Descriptor(
 "match like (use % at the beginning or end of <like>"+
 " for wild-card)")
 String filter)
 throws InvalidCredentialsException
 {
 BookshelfService service = lookupService();

 String sessionId = service.login(
 username, password.toCharArray());

 Set<String> results;

 if ("title".equals(attribute))
 {
 results = service.searchBooksByTitle(sessionId, filter);
 }
 else if ("author".equals(attribute))
 {
 results =
 service.searchBooksByAuthor(sessionId, filter);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[139]

 }
 else if ("category".equals(attribute))
 {
 results =
 service.searchBooksByCategory(sessionId, filter);
 }
 else
 {
 throw new RuntimeException(
 "Invalid attribute, expecting one of { 'title', "+
 "'author', 'category' } got '"+attribute+"'");
 }

 return getBooks(sessionId, service, results);
 }

The remainder of the method is pretty straightforward, the attribute is checked against
the valid values and the appropriate search is triggered.

Since the "rating"-based search is supposed to be directed to the method with another
signature, we ensure that this method was not selected by mistake (for example, when
upper is not passed or when it cannot be made into an int).

The lookupService() method uses the stored BundleContext to look up the bookshelf
service and return it. It throws a RuntimeException if it doesn't find one:

 protected BookshelfService lookupService()
 {
 ServiceReference reference = context.getServiceReference(
 BookshelfService.class.getName());

 if (reference == null)
 {
 throw new RuntimeException(
 "BookshelfService not registered, cannot invoke "+
 "operation");
 }

 BookshelfService service =
 (BookshelfService) this.context.getService(reference);
 if (service == null)
 {
 throw new RuntimeException(
 "BookshelfService not registered, cannot invoke "+
 "operation");
 }
 return service;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[140]

Notice the paired checks of the service reference and the service for null. As we saw earlier,
when we stopped the inventory implementation before starting the bookshelf service, the
environment can change at any time, such as services are stopped, upgraded, and so on
while others are running. This is one of the powers of this service platform, but is also an
added responsibility on the developer.

The getBooks() method is defined next. It takes a set of ISBNs and returns the
corresponding set of Book entries:

 private Set<Book> getBooks(
 String sessionId, BookshelfService service,
 Set<String> results)
 {
 Set<Book> books = new HashSet<Book>();
 for (String isbn : results)
 {
 Book book;
 try
 {
 book = service.getBook(sessionId, isbn);
 books.add(book);
 }
 catch (BookNotFoundException e)
 {
 System.err.println("ISBN " + isbn +
 " referenced but not found");
 }
 }
 return books;
 }

The second search signature is dedicated to rating-based search. It takes two ints, instead
of a String filter, for lower and upper bounds of the rating:

 @Descriptor("Search books by rating")
 public Set<Book> search(
 @Descriptor("username") String username,
 @Descriptor("password") String password,
 @Descriptor("search on attribute: rating") String attribute,
 @Descriptor("lower rating limit (inclusive)") int lower,
 @Descriptor("upper rating limit (inclusive)") int upper)
 throws InvalidCredentialsException
 {
 if (!"rating".equals(attribute))
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[141]

 throw new RuntimeException(
 "Invalid attribute, expecting 'rating' got '"+
 attribute+"'");
 }

 BookshelfService service = lookupService();

 String sessionId =
 service.login(username, password.toCharArray());

 Set<String> results =
 service.searchBooksByRating(sessionId, lower, upper);

 return getBooks(sessionId, service, results);
 }

On Converters
Depending on the number and type of parameters passed to the command on the
shell, Gogo will attempt to find (coerce) a best matching method signature for the
command request.

The shell can recognize the basic types and convert them for use as parameters when calling
the command function. However, for more complex types, it would require the assistance of
a helper class.

The Converter (org.apache.felix.service.command.Converter) is a service that
knows how to convert a String to an object of a specific type and vice-versa.

Without going into too much detail, the converter is registered as a service, along with a
property (osgi.converter.classes) that lists the classes it supports conversion for.
The service exposes the following two methods:

convert(...) that takes the target class (the desired type) and an input object
and is expected to return the converted object

format(...) that takes an object to format, a formatting directive, and a
Converter for delegation of the formatting of sub-parts

The converters are ordered by service.ranking and attempted until one successfully
converts or formats the content.

Let's go back to our case study: What's left is the activator to register the service and its
commands with the framework and the Gogo Runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[142]

Time for action – implementing a bundle activator
The activator for this bundle will only be responsible for registering commands. It's not of
greater complexity than the ones we've seen so far.

Create the class BookshelfTuiActivator and make it register an instance of the
BookshelfServiceProxy at start.

The values for the command-related properties were defined in the proxy as constants
earlier. Defining them in the service class makes it easier to update them later (for example,
when we include the add command).

public class BookshelfTuiActivator implements BundleActivator
{

 public void start(BundleContext bc)
 {
 Hashtable props = new Hashtable();
 props.put("osgi.command.scope", BookshelfServiceProxy.SCOPE);
 props.put("osgi.command.function",
 BookshelfServiceProxy.FUNCTIONS);

 bc.registerService(
 BookshelfServiceProxy.class.getName(),
 new BookshelfServiceProxy(bc),
 props);
 }

 public void stop(BundleContext bc)
 {
 }
}

The service is registered as we did before. The difference is that we also provide the service
properties along with the register request.

You still need to configure the bundle plugin in the POM, and you're done. Nothing really
special for this configuration, compared to the previous ones. For reference, here's what that
section would look like:

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.1.0</version>
 <extensions>true</extensions>

 <configuration>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[143]

 <instructions>
 <Bundle-Category>sample</Bundle-Category>
 <Bundle-SymbolicName>
 ${artifactId}
 </Bundle-SymbolicName>
 <Export-Package>
 com.packtpub.felix.bookshelf.service.tui
 </Export-Package>
 <Bundle-Activator>
com.packtpub.felix.bookshelf.service.tui.activator.-
BookshelfTuiActivator
 </Bundle-Activator>
 <Private-Package>
 com.packtpub.felix.bookshelf.service.tui.activator
 </Private-Package>
 </instructions>
 <remoteOBR>repo-rel</remoteOBR>
 <prefixUrl>
 file:///C:/projects/felixbook/releases</prefixUrl>
 <ignoreLock>true</ignoreLock>
 </configuration>
 </plugin>

With this last update, we can build and deploy this bundle for a test run.

Time for action – packaging and installing
Let's bundle it all up, and deploy it, then install and start it on the framework. By now,
building and deploying a bundle is second nature for you, so the details for that are not
included here.

With the building of the bundle and its deployment to the releases repositories being
completed successfully, we prepare the framework for the bundle install.

The shell extension bundles fit on start level 5, as defined in Chapter 1, Quick Intro to Felix
and OSGi. Here we set the initial start level for all the newly installed bundles to 5 and
change the framework level as well.

g! bundlelevel -i 5

g! frameworklevel 5

Refresh the OBR repository and get the updated list using:

g! repos refresh file:///C:/projects/felixbook/releases/repository.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[144]

g! list book

Bookshelf Inventory API (1.5.0)

Bookshelf Inventory Impl - Mock (1.5.0)

Bookshelf Service (1.7.0)

Bookshelf Service Gogo commands (1.8.0)

Then install (and start) the newly deployed bundle:

g! deploy -s "Bookshelf Service Gogo commands"

Target resource(s):

 Bookshelf Service Gogo commands (1.8.0)

Deploying...done.

The bundle listing should now be something like the following lines:

g! lb

START LEVEL 5

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.5.0)

 6|Active | 2|Bookshelf Inventory Impl - Mock (1.5.0)

 7|Active | 3|Bookshelf Service (1.7.0)

 8|Active | 5|Bookshelf Service Gogo commands (1.8.0)

The newly installed bundle is now active and we can give it a try.

Time for action – trying out the book:search command
If all went well, typing help should include our book:search command in the listing:

g! help

book:search <-- this is our command!

felix:bundlelevel

felix:cd

felix:frameworklevel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

felix:headers

felix:help

felix:inspect

felix:install

felix:lb

felix:log

felix:ls

...

Also check that the help command displays the command syntax as we have intended
it to be:

-g! help search

search - Search books by rating

 scope: book

 parameters:

 String username

 String password

 String search on attribute: rating

 int lower rating limit (inclusive)

 int upper rating limit (inclusive)

search - Search books by author, title, or category

 scope: book

 parameters:

 String username

 String password

 String search on attribute: author, title, or category

 String match like (use % at the beginning or end of <like> for
wild-card)

Notice the two syntax help entries available for the search command, as we had defined
them in the service proxy previously—one that takes five parameters (the last two being
integers), and the other that takes four Strings.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

Implementing the book:add command
The next thing is to implement the book:add command, which is implementing the
add() method in the BookshelfServiceProxy and including the function name
in the commands list.

Time for action – implementing the book-add command
In the same manner as we've implemented the book:search command, edit the
BookshelfServiceProxy class and declare the add() method:

 public String add(@Descriptor("username") String username,
 @Descriptor("password") String password,
 @Descriptor("ISBN") String isbn,
 @Descriptor("Title") String title,
 @Descriptor("Author") String author,
 @Descriptor("Category") String category,
 @Descriptor("Rating (0..10)") int rating)
 throws InvalidCredentialsException,
 BookAlreadyExistsException, InvalidBookException
 {
 BookshelfService service = lookupService();
 String sessionId = service.login(
 username, password.toCharArray());

 service.addBook(
 sessionId, isbn, title, author, category, rating);
 return isbn;
 }

This command is named "book:add" and will take the book's ISBN, title, author, category, and
rating as arguments, in addition to the authentication user and password. Its implementation
is straightforward.

To declare it as part of the exposed functions, we include the method name in the list
of functions:

 public static final String[] FUNCTIONS = new String[] {
 "add", "search"

 };

This new command implementation is ready. Since we've used the constant from this class
during the service registration, we don't need to make any changes to the activator code.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[148]

Go ahead hero – building and deploying the changes
To test the changes we've made, we'll need to rebuild the following bundles:

bookshelf-service: Was modified to remove the test call at startup. This will be
released with version 1.8.0

bookshelf-service-tui: To which we've added the book:add command. This
will be released with version 1.8.1

Do you think you can do it on your own? (Hint: this was covered in Chapter 5.)

Updating an installed bundle
We have just released new versions of bundles bookshelf-service and bookshelf-
service-tui. Before updating them in the framework, the state of the bundle listing
should be something like:

g! lb

START LEVEL 5

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.5.0)

 6|Active | 2|Bookshelf Inventory Impl - Mock (1.5.0)

 7|Active | 3|Bookshelf Service (1.7.0)

 8|Active | 5|Bookshelf Service Gogo commands (1.8.0)

The repos refresh command instructs the OBR service to reload the repositories and
update its listings:

g! repos refresh file:///C:/projects/felixbook/releases/repository.xml

Now, by searching for our bundles, we will find:

g! list book

Bookshelf Inventory API (1.5.0)

Bookshelf Inventory Impl - Mock (1.5.0)

Bookshelf Service (1.8.0, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

Bookshelf Service Gogo commands (1.8.1, ...)

Notice that the bundles "Bookshelf Service" and "Bookshelf Service Gogo commands" now
have the newer versions shown in the list of versions available. The list is shortened with
ellipses, which means that other (lower) versions have been omitted.

To get a fuller listing, we can use the verbose option:

g! list -v book

Bookshelf Inventory API

 [com.packtpub.felix.bookshelf-inventory-api] (1.5.0)

Bookshelf Inventory Impl - Mock

 [com.packtpub.felix.bookshelf-inventory-impl-mock] (1.5.0)

Bookshelf Service

 [com.packtpub.felix.bookshelf-service] (1.8.0, 1.7.0)

Bookshelf Service Gogo commands

 [com.packtpub.felix.bookshelf-service-tui] (1.8.1, 1.8.0)

Here the "Bookshelf Service" is available with two versions, namely, 1.7.0 and 1.8.0.

To instruct Felix to update its currently installed bundle with its latest version, we use the
update command, which we've seen in Chapter 3. It takes the bundle ID as a parameter and
updates the bundle with the latest version:

g! update 7

DEBUG: Using ResourceSelectionStrategy: newest

DEBUG: Using Version 1.8.0 for bundle com.packtpub.felix.bookshelf-
service

g!

g! update 8

DEBUG: Using ResourceSelectionStrategy: newest

DEBUG: Using Version 1.8.1 for bundle com.packtpub.felix.bookshelf-
service-tui

The resulting bundle listing should be as follows:

g! lb

START LEVEL 5

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[150]

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.5.0)

 6|Active | 2|Bookshelf Inventory Impl - Mock (1.5.0)

 7|Active | 3|Bookshelf Service (1.8.0)

 8|Active | 5|Bookshelf Service Gogo commands (1.8.1)

And the updated help listing should be:

g! help

book:add

book:search

felix:bundlelevel

felix:cd

felix:frameworklevel

felix:headers

felix:help

felix:inspect

...

The add command was added to the listing, as expected. Its syntax from the help
command is:

g! help add

add

 scope: book

 parameters:

 String username

 String password

 String ISBN

 String Title

 String Author

 String Category

 int Rating (0..10)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

What just happened?
By deploying newer versions of the bookshelf-service and bookshelf-service-tui
bundles, Maven (with the help of the maven-bundle-plugin) has updated our releases
repository with new entries.

Then the repos refresh command has instructed the OBR service to go and fetch that file
again and to update its listing cache with its latest contents. This has added the versions of
the newly deployed bundles to the list.

When we've asked Felix to update the bundle (using the update command), it has looked at
the bundle source location. Bundles installed using the OBR service are given a special URL as
the source location (for example, obr://com.packtpub.felix.bookshelf-service/-
1284463217828).

The OBR service has a stream handler registered for the obr: protocol; it will intercept
requests for load of this bundle. Then check for newer versions of the bundles and return the
latest compatible bundle.

In this case, the bundle is already ACTIVE, so the framework will:

Stop the bundle

Get the newer version, resolve, and install it

Start the bundle again

If you need to, go back to Chapter 1 to review the states of a bundle in the framework.

Trying the commands
Now that we've updated the code with the add command and cleaned up the bookshelf-
service code, we can give it an end-to-end test.

To empty our memory-based inventory, it's enough to refresh the bookshelf-inventory-
impl-mock bundle by running the following:

g! refresh 6

Stoping Book Inventory Mock Impl

Starting Book Inventory Mock Impl

Let's add a couple of books to test the add command using the following:

g! add admin admin 9789079350018 "OSGi Service Platform, Core
Specification, Release 4, Version 4.1" "OSGi Alliance" Reference 8Gi Alliance" Reference 8

9789079350018

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[152]

g!

g! add admin admin 9789079350025 "OSGi Service Platform, Service
Compendium, Release 4, Version 4.1" "OSGi Alliance" Reference 6

9789079350025

Of course, the ratings have been assigned for the sake of the example. Both of these books
are very good.

Searching for any author would return the following:

g! search admin admin author %

Reference: OSGi Service Platform, Service Compendium, Release 4, Version
4.1 from OSGi Alliance [6]

Reference: OSGi Service Platform, Core Specification, Release 4, Version
4.1 from OSGi Alliance [8]

Searching for books with a rating between 5 and 7:

g! search admin admin rating 5 7

Reference: OSGi Service Platform, Service Compendium, Release 4, Version
4.1 from OSGi Alliance [6]

It behaves as expected.

Go ahead hero – implementing the other commands
The two commands, book:search and book:add, are enough for the tasks in this chapter,
so we won't go any further in implementing others. However, that does not mean that you
should not go ahead and add them on your own!

This is a good place for you to practice what you've learned by implementing some more
commands. Here are a few suggestions:

Add a book:get command to retrieve the book information from an exact
ISBN match

Add a book:remove command to remove a book from the bookshelf based on
its ISBN

Add a book:started command to mark a book as just started, given its ISBN

Add a book:finished command to mark a book as just finished, giving it a rating

Improve the search command to allow multiple simultaneous search criteria

The goal is to allow a full management of your bookshelf through the
command-line interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

Sourcing scripts
Now that we have the add command implemented, we can look at how to write a simple
script for adding books into our inventory. Since our inventory implementation does not
save the books between inventory service restarts, it is useful to have such scripts.

Time for action – creating a book population script
Writing a script is simple. Create a file (let's call it populate-books.tsl) and place it
somewhere you can easily access from your Felix installation. I've put it in a directory under
the Felix home directory called scripts/.

The population script taken as an example here will have the same books as we've used
previously. Each command is on a line (below they wrap around because of page
width limitations):

echo Now adding books to inventory. . .

add admin admin 9789079350018 "OSGi Service Platform, Core
Specification, Release 4, Version 4.1" "OSGi Alliance" Reference 8

add admin admin 9789079350025 "OSGi Service Platform, Service
Compendium, Release 4, Version 4.1" "OSGi Alliance" Reference 6

echo Done.

This program can now be executed on framework restart to add those two books
to the inventory.

To execute the program, we use the source command (introduced in Chapter 3). I've
refreshed the bundle to clear the books that were added earlier:

g! refresh 6

g!

Stoping Book Inventory Mock Impl

Starting Book Inventory Mock Impl

Use the cd command to change directory and the ls command to double-check that the
file is there:

g! cd scripts

Name scripts

CanonicalPath C:\felix\scripts

Parent C:\felix

Path C:\felix\scripts

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[154]

AbsoluteFile C:\felix\scripts

AbsolutePath C:\felix\scripts

CanonicalFile C:\felix\scripts

ParentFile C:\felix

g! ls

C:\felix\scripts\populate-books.tsl

Now run the following script:

g! source populate-books.tsl

Now adding books to inventory. . .

Done.

A quick search confirms the books were correctly added.

g! search admin admin author %

Reference: OSGi Service Platform, Core Specification, Release 4, Version
4.1 from OSGi Alliance [8]

Reference: OSGi Service Platform, Service Compendium, Release 4, Version
4.1 from OSGi Alliance [6]

This scripting capability is very useful. For example, I've constructed a script that helps me
restart with a fresh Felix installation in just a few steps as follows:

update obr repos
echo Adding releases obr repository. . .
repos add file:///C:/projects/felixbook/releases/repository.xml

deploy tier 3
echo Deploying tier 3 \(inventory\) bundles. . .
bundlelevel -i 2
frameworklevel 2
deploy -s "Bookshelf Inventory Impl - Mock"

deploy tier 2
echo Deploying tier 2 \(business logic\) bundles. . .
bundlelevel -i 3
frameworklevel 3
deploy -s "Bookshelf Service"

deploy tier 1
echo Deploying tier 1 \(presentation\) bundles. . .
bundlelevel -i 5
frameworklevel 5
deploy -s "Bookshelf Service Gogo commands"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

populate books
source populate-books.tsl

After starting with a clean Felix install (or deleting the felix-cache directory), change
to the scripts/ directory:

g! cd scripts

Name scripts

CanonicalPath C:\felix\scripts

Parent C:\felix

Path C:\felix\scripts

AbsoluteFile C:\felix\scripts

AbsolutePath C:\felix\scripts

CanonicalFile C:\felix\scripts

ParentFile C:\felix

And execute the install.tsl script. It registers the releases repository with the
OBR service and installs the bundles (with the right start levels). It then calls the
populate-books.tsl script to add the books to the inventory:

g! source install.tsl

Adding releases obr repository. . .

Deploying tier 3 (inventory) bundles. . .

Target resource(s):

 Bookshelf Inventory Impl - Mock (1.5.0)

Required resource(s):

 Bookshelf Inventory API (1.5.0)

Deploying...

Starting Book Inventory Mock Impl

done.

Deploying tier 2 (business logic) bundles. . .

Target resource(s):

 Bookshelf Service (1.8.0)

Deploying...done.

Deploying tier 1 (presentation) bundles. . .

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Command-Line Interface

[156]

Target resource(s):

 Bookshelf Service Gogo commands (1.8.1)

Deploying...done.

Now adding books to inventory. . .

Done.

Of course, this script is now as far as we have come in this chapter; it will require a
step-by-step update as you go along.

Summary
In this chapter, we've looked at the Apache Felix Gogo Shell Service, the service that provides
a way to interact with bundle services through a simple text command line.

You have:

Learned how to extend the Gogo Shell service with your own commands

Implemented the book:search and book:add commands in a new bundle
(bookshelf-service-tui)

Learned how to update a bundle with a newer version

Practiced sourcing a script to automate recurrent tasks

In the next chapter, we'll look at Felix iPOJO, which simplifies the registration of services and
their retrieval by using declarative registration and injection of dependencies.

www.it-ebooks.info

http://www.it-ebooks.info/

9
Improve the Bookshelf Service

with iPOJO

So far, you've noticed while implementing our case study that we've used the
bundle activator to register services with the framework. We've also looked at
them from the framework's perspective when we needed to use them.

However, we've had to look up the service every time it was needed, to ensure
that we always have the latest valid instance that is registered with the
framework.

A developer may add a listener to framework activity (a service tracker) and
update references on changes to dependencies of interest. Not only is this a
more complex functionality to implement, but the resulting code is also mostly
boiler-plate, that is, it is very similar from bundle to bundle—one usually ends
up copying and pasting pieces of code or writing a common library to manage
it. This is where iPOJO comes in handy.

In this chapter, we will look at how iPOJO can help keep this process simple, while improving
the overall performance. You will:

Look at an overview of the inversion of control component-oriented programming
patterns and its application in our context, namely, the service locator, dependency
injection, whiteboard, and extender patterns

Introduce iPOJO, the service and Maven plugin, and look at the ways it is used
to simplify OSGi integration, using XML configuration as well as annotations

Learn how to use the iPOJO Gogo commands to get a view of registered iPOJO
instances and factories

www.it-ebooks.info

http://www.it-ebooks.info/

Improve the Bookshelf Service with iPOJO

[158]

You will also:

Simplify the case study bundles by migrating them to iPOJO, keeping their
functionality unchanged.

What is Inversion of Control?
Inversion of control (IoC) is a group of design patterns (part of the Component Oriented
Programming paradigm) in which logic, that was otherwise controlled by one component, is
provided to it by another one. This logic can be related to the communication with a service,
the instantiation of dependencies, their configuration, and so on.

In a classical procedural program, the main code block defines a sequence of steps that
constitutes the program's execution flow. The program starts, initializes some variables, sets
up connections to external systems, and executes its logic. It needs to:

Know where to get its configuration, how to read it, and initialize the properties of
its components

Know which systems it needs to connect to, where they are, the connection
adapters, and so on

Know how to perform its business logic

However, from the preceding activities, only the last one is really a necessary responsibility
of that piece of code. For example, the configuration could be stored in a file, in a database,
or provided by another service—all that this component cares about is it being configured.
Similarly, with the connection to external systems, the component should not care which
adaptor is providing the connectivity, as long as it follows a defined interface.

The main idea behind IoC is to relinquish the fulfillment of those tasks to other components.
The result is that the main component is only responsible for its area of concern, with other
components taking care of tasks like providing configuration objects, initializing links to
services, updating the service references when they are no longer available, and so on.

The progressive move from monolithically stand-alone applications to framework-based
component-oriented designs makes the implementation of this inversion of control more
reachable. The framework can provide the functionality needed to facilitate these kinds of
patterns and add-on components implement them.

A good example that we've already covered is the bundle activator taking control of the
execution flow at the point where a bundle is starting or stopping. In this scenario, the
framework performs all the tasks that are common to all bundles—loading, resolving, and so
on. The framework then inverts the control by handing it to the bundle activator while the
bundle is starting (or stopping). The bundle knows what needs to be done during that part
of the process, but doesn't need to know more.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[165]

The following is a skeleton of this file that contains the placeholders for its parts. We'll look
at each of those in greater detail through the following code:

<?xml version="1.0" encoding="UTF-8"?>
<ipojo
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="org.apache.felix.ipojo
 http://felix.apache.org/ipojo/schemas/CURRENT/core.xsd"
 xmlns="org.apache.felix.ipojo">

 <component />
 <component />

 <instance />
 <instance />
</ipojo>

Components
The component element declares a service that is to be handled by iPOJO. The component's
target class is set through the classname attribute. An optional name can be given to the
component and used to reference it.

The component element also declares what it provides to iPOJO, the framework, and what it
requires from them.

The <provides/> and <requires/> elements have a rich set of declarative options, most
of which are not covered here. We will focus on the basics needed for the integration.

For example, a component can provide a service, which is registered using the component's
interfaces. It can also provide properties to be published with the service.

Examples of things a component can require are lifecycle callbacks (the component provides
a method to be called when a lifecycle stage is achieved) or services that it needs set
through injection.

Once you're comfortable with the use of iPOJO, it's recommended that you read about some
more of those and experiment with them. For now, let's focus on a simple configuration; the
one we'll put in place for our bookshelf service:

<component
 name="BookshelfServiceImpl"
 classname=
 "com.packtpub.felix.bookshelf.service.impl.
BookshelfServiceImpl">
 <provides />

www.it-ebooks.info

http://www.it-ebooks.info/

Improve the Bookshelf Service with iPOJO

[166]

The component classname is specified along with an optional name. If the name is not set,
the class name will be used instead.

The <provides /> element tags the component as providing a service based on the
interfaces it implements. iPOJO will register instances of this component with the framework.

The service also requires its inventory field to be injected with an instance of a
BookInventory.

 <requires field="inventory" />
</component>

There's no need to tell iPOJO the type of the required injection. It will find out on its own by
inspecting the type this field is declared as in the component class.

Callbacks involve the instances of the component during stages of its life-cycle. Basically, the
component optionally provides a method to be called as it is validated and invalidated. In
this case, we don't need it, but the syntax would be as follows:

 <callback transition="validate" method="start" />
 <callback transition="invalidate" method="stop" />
</component>

In the previous syntax, the start() method of the component would be called on component
validation and the stop() method would be called during its invalidation. The callback target
method names are arbitrary (that is, they don't have to be called start and stop).

Instances
The instance element requests the creation of an instance of a declared component. It
specifies the component that needs to be instantiated, and an optional name for it, as well
as the configuration of properties of the instance.

In our case, we're creating an instance of the component "BookshelfServiceImpl" that
we've previously declared. We will name it bookshelf.service.impl; this name will
appear later when we inspect the instances that iPOJO has detected.

 <instance
 component="BookshelfServiceImpl"
 name="bookshelf.service.impl" />

If needed, properties that the component requires can also be set when declaring
the instance:

<instance component="name-ref" name="inst-name">
 <property name="propName" value="propValue"/>
</instance>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improve the Bookshelf Service with iPOJO

[168]

The following is the POM build plugins section used for our bundles:

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-ipojo-plugin</artifactId>
 <version>1.6.0</version>
 <executions>
 <execution>
 <goals>
 <goal>ipojo-bundle</goal>
 </goals>
 <configuration>
 <metadata>src/main/ipojo/meta.xml</metadata>
 </configuration>
 </execution>
 </executions>
 </plugin>

This requests the execution of the ipojo-bundle goal and specifies the location of
the iPOJO, metadata file. There are other configuration items that can be of interest.
I recommend you check the plugin documentation for more information at:
(http://felix.apache.org/site/ipojo-maven-plug-in.html).

Injecting iPOJOs
Let's modify our use case bundles to use the iPOJO functionality. Here's the plan:

Modify the bookshelf-inventory-impl-mock bundle, adding an iPOJO
descriptor for the component and its instance and removing the bundle activator.

Modify the bookshelf-service bundle to have the inventory field injected
instead of it performing a lookup in the service and declare it in its descriptor.

Modify the bookshelf-service-tui commands to have as bookshelf service
field injected and have them instantiated and registered through iPOJO, here too no
longer needing to keep the activator.

As we will soon see, iPOJO allows configuration in XML and using annotations on the
component. To practice both technologies, we will modify the bookshelf-inventory-
impl-mock and bookshelf-service bundles to use XML-only and the bookshelf-
service-tui bundle to use both.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

The step-by-step learning of iPOJO will be as follows:

1. The first example (bookshelf-inventory-impl-mock) only requires the
publishing of a service using XML only.

2. The second example (bookshelf-service) requires both the injection of dependencies
and the publishing of a service using XML only.

3. The third example combines two extensions, one for Gogo and the other
for iPOJO and requires the injection of dependencies and the publishing of
a service. It is also configured for iPOJO using a combination of XML-based
and annotation-based declarations.

But first let's install the iPOJO bundle on our Felix framework.

Install the iPOJO service bundle
We'll start the Apache Felix iPOJO bundle directly from the registered Felix OBR,
just like we did previously with the other bundles, with the obr:deploy command
(including the -s option):

g! deploy -s "Apache Felix iPOJO"

Target resource(s):

 Apache Felix iPOJO (1.6.4)

Deploying...done.

The service should now be ready for use. The next thing we need to do is to update our
bundles to use it.

Let iPOJO register the inventory implementation
When we implemented BookInventoryMockImpl in Chapter 5, The Book Inventory
Bundle, we used a BundleActivator and the BookInventoryMockImplActivator
to register it with the framework on start. It was actually a good idea then, because, while
in validation mode, we've also inserted books on start.

As all we need to do is register the service, we'll move it to iPOJO. It's an easy thing to do.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

You may choose to also delete the BookInventoryMockImplActivator class,
for completeness.

Next, we hook the maven-ipojo-plugin. Do not forget to include the ipojo-bundle
goal in its execution goals.

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-ipojo-plugin</artifactId>
 <version>1.4.2</version>
 <executions>
 <execution>
 <goals>
 <goal>ipojo-bundle</goal>
 </goals>

We will also specify an alternate metadata file location:

 <configuration>
 <metadata>src/main/ipojo/meta.xml</metadata>
 </configuration>
 </execution>
 </executions>
 </plugin>

Also, update the project version to 1.9.0 and that's it for the POM. Let's write the
metafile now.

Configure bundle for iPOJO
Edit the file src/main/ipojo/meta.xml: We will go through the parts of the descriptor
while explaining them:

<ipojo
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="org.apache.felix.ipojo
 http://felix.apache.org/ipojo/schemas/CURRENT/core.xsd"
 xmlns="org.apache.felix.ipojo">

First, we start by declaring the component. The classname designates the name of the
component class and points the iPOJO plugin to it for inspection. It retrieves the interface
that it will use to register the service.

 <component
 classname="com.packtpub.felix.bookshelf.inventory.impl.mock.
BookInventoryMockImpl"
 name="BookInventoryMockImpl">

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[173]

During the build cycle, the iPOJO Maven plugin picked up the metadata file and kicked off
the manipulation. The plugin manipulates the bundle, based on the metadata file:

[INFO] [ipojo:ipojo-bundle {execution: default}]

[INFO] Start bundle manipulation

[INFO] Metadata file : C:\projects\felixbook\sources\-
 com.packtpub.felix.bookshelf-inventory-impl-mock\-
 src\main\ipojo\meta.xml

[INFO] Input Bundle File : C:\projects\felixbook\sources\
 com.packtpub.felix.bookshelf-inventory-impl-mock\
 target\com.packtpub.felix.bookshelf-inventory-impl-mock-1.9.0.jar

[INFO] Bundle manipulation - SUCCESS

This is a good part to check when building, looking for any warnings or errors.

Take a look at the changes it made: open the bundle archive (or unzip it somewhere)
and inspect the file META-INF/MANIFEST.MF. The header iPOJO-Components was
added to it (replacing the Bundle-Activator header, which we have omitted from
the plugin configuration).

We don't need to go through it here, but if you inspect it, you'll find that its value is a
compilation of the description we've given in the XML file and some additional information
that iPOJO extracted from the component class, encoded in a Lisp-like format.

The Felix iPOJO Gogo Command bundle
The Felix iPOJO Gogo Command bundle (previously arch) provides access to the
components and instances held by the iPOJO service. It is a useful tool when debugging
injection by providing information on the instances and interconnects that iPOJO holds.

It can be started from the following OBR:

g! deploy -s "Apache Felix iPOJO Gogo Command"

At the time of writing this section, the iPOJO Gogo Command was just released and still had
a few install issues (for example, deploying using OBR attempts to install another version
of iPOJO). If you face a similar issue, then install it using a direct link to one of the
available mirrors:

g! start http://www.ibiblio.org/pub/mirrors/apache/felix/org.apache.
felix.ipojo.arch.gogo-1.0.0.jar

[WARNING] org.apache.felix.ipojo.arch.gogo.Arch : The specification org.
apache.felix.ipojo.arch.gogo.Arch is not implemented by org.apache.felix.
ipojo.arch.gogo.Arch it might be a superclass or the class itself.

The warning we just saw can be ignored.

www.it-ebooks.info

http://www.it-ebooks.info/

Improve the Bookshelf Service with iPOJO

[174]

ipojo scope commands usage
The following commands are provided by the iPOJO Gogo Command bundle. They are in the
ipojo scope:

factories: To list the registered factories

factory factoryName: To display information on the given factory

instances: To list the registered instances

instance instanceName: To display information on the given instance

handlers: To list registered handlers

The factories are our component declarations. Handlers are a more advanced topic, worth
exploring if you'd like to extend iPOJO.

For example, the following command is used to list the instances iPOJO currently
knows about:

g! instances

Instance bookshelf.inventory.impl.mock -> valid

Instance org.apache.felix.ipojo.arch.gogo.Arch-0 -> valid

The first item in the list is our bookshelf inventory implementation instance. Its details are
retrieved as follows (output reformatted):

g! instance bookshelf.inventory.impl.mock

instance

 component.type="BookInventoryMockImpl"

 state="valid"

 bundle="6"

 name="bookshelf.inventory.impl.mock"

 handler

 state="valid"

 name="org.apache.felix.ipojo:provides"

 provides

 service.id="27"

 state="registered"

 specifications=

"[com.packtpub.felix.bookshelf.inventory.api.BookInventory]"

 property value="BookInventoryMockImpl"

 name="factory.name"

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[179]

Deploy and check
Once rebuilt and deployed to the releases repository, and then installed and started in Felix,
checking with the ipojo:instances command should give:

g! instances

Instance bookshelf.inventory.impl.mock -> valid

Instance org.apache.felix.ipojo.arch.gogo.Arch-0 -> valid

Instance bookshelf.service.impl -> valid

The newly configured bundle was recognized by iPOJO. Let's check its details as follows:

g! instance bookshelf.service.impl

instance

 component.type="BookshelfServiceImpl"

 state="valid"

 bundle="9"

 name="bookshelf.service.impl"

 handler

 state="valid"

 name="org.apache.felix.ipojo:requires"

 requires optional="false" aggregate="false" state="resolved"

 binding-policy="dynamic" proxy="true"

 id="com.packtpub.felix.bookshelf.inventory.api.BookInventory"

 specification=

 "com.packtpub.felix.bookshelf.inventory.api.BookInventory"

...

The detailed instance information shows the bookshelf.service.impl instance
registered as requiring com.packtpub.felix.bookshelf.inventory.api.
BookInventory and that this requirement is fulfilled (state="resolved").

Testing the book commands should show no difference in their behavior. We'll go through a
round of tests after updating the text UI bundle. But first, let's learn how to use annotations
for component declarations instead of XML.

www.it-ebooks.info

http://www.it-ebooks.info/

Improve the Bookshelf Service with iPOJO

[180]

iPOJO using annotations
An alternative way of tagging components for iPOJO is to annotate them directly in the
Java code. iPOJO provides annotations support through the org.apache.felix.ipojo.
annotations library.

Overview
There are some gains in clarity of the code when using annotations and it also simplifies
updates by keeping the configuration closer to its target class or field.

For instance, in the previous declaration of the bookshelf service, we could have replaced
the configuration entry in the meta.xml file:

<component
 classname=
 "com.packtpub.felix.bookshelf.service.impl.BookshelfServiceImpl"
 name="BookshelfServiceImpl">

 <provides />

 <requires field="inventory" />
</component>

With annotations to the class BookshelfServiceImpl:

@Component(name="BookshelfServiceImpl")
@Provides
public class BookshelfServiceImpl implements BookshelfService
{
 @Requires
 BookInventory inventory;

Which would have the same effect.

Beginner's annotations
Let's quickly go through the main annotations of interest; the others are left for you to check
online through the available iPOJO documentation (http://felix.apache.org/site/
how-to-use-ipojo-annotations.html).

As a general rule, when declaring components both as annotations and in XML, the XML
takes precedence. This is a common pitfall, where one would want to move to annotations
but forget to remove the declarations from the XML configuration file, thus getting
unexpected results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[181]

@Component
It annotates an implementation class and is used to declare it as a component type (that is,
a factory). The classname attribute is not available here as it is the class that's annotated.
Some of the attributes of interest here are as follows:

name: Optional definition of the component name, defaults to the class name if
not set

immediate: Optionally tag this component as requiring to be created as soon as it
has all its requirements met. It is true, by default, when the component does not
provide a service. Otherwise it defaults to false. An immediate component is dealt
with an eager instantiation mechanism; while a non-immediate component follows
a lazy instantiation mechanism (instantiated when first needed).

The other attributes are a bit more advanced, but I recommend you go online and read
about them when you get more comfortable using annotations.

@Provides
It annotates an implementation class and is used to declare it as a component that provides
a service.

Among the available attributes, one of interest is:

strategy: Defines the instantiation strategy (or policy) for the provided service. Its
default value is:

SINGLETON, meaning that a single instance of the service is shared
among the components that require it

Other values are:

INSTANCE, specifying that a separate instance is created per
component that requires it

SERVICE, refers to the OSGi service factory

METHOD, refers to one of the component methods as a
factory method

@Requires
It annotates a class field and declares it as a dependency requiring injection.

Some attributes of interest are:

optional: Specifies if the field assignment is optional. It's default value is true

nullable: Allows the Null object injection when the dependency is not available. Its
default value is false.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improve the Bookshelf Service with iPOJO

[186]

 <goal>ipojo-bundle</goal>
 </goals>
 <configuration>
 <metadata>src/main/ipojo/meta.xml</metadata>
 </configuration>
 </execution>
 </executions>
 </plugin>

You'll notice that it is only slightly different than the others we've seen so far.

Have a go hero – updating the bundles to use annotations
We've practiced iPOJO using both XML-based and annotation-based configuration of
components. How about you try to move the other two bundles (bookshelf-inventory-
impl and bookshelf-service) to use annotations?

Items to keep in mind while doing this:

Remember that the XML configuration takes precedence over annotations. You'll
need to remove component declarations from the XML configuration to switch to
newly added annotations.

Unless for very simple cases, it's not recommended to use the Instantiate annotation
to request an instance of the component (see previous topics for a short discussion
on that).

The result would functionally be the same as what we currently have.

Have a go hero – implementing a file-based bookshelf-inventory
One of the nice features of iPOJO is that it manages a component's dependencies out of the
box. This means that it will ensure the dependency is injected with its implementation, when
one is available.

Also, we now know how to define a component's required properties.

This is an opportune time to write another implementation of the BookInventory service,
as a new bundle (say, bookshelf-inventory-impl-file), which would store the book
data to a file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

Here are some hints for this:

Make the component require a property, which is the path to store the books in,
relative to the framework's persistent storage area. Access to the framework's
persistent storage area is provided by the BundleContext's getDataFile()
method

Make the service load the contents of the stored books on start-up and index
them for search. This is done by specifying a callback on validate that will
load all stored books.

When the implementation is complete, it's enough to uninstall the older one
(bookshelf-inventory-impl-mock) and install and start the new implementation
(bookshelf-inventory-impl-file). The new implementation will be injected into
the bookshelf service inventory field automatically.

Summary
In this chapter, we've introduced iPOJO and the way it simplifies integrating with a
framework by providing inversion of control functionality.

By now, you should be able to:

Declare a component to be registered by iPOJO without the need for a
BundleActivator using both iPOJO configuration means (XML and annotations)

Declare fields that a component requires and ask iPOJO to inject them, when they
become available, and update them as they move through their life-cycle

We have also migrated our case study to use iPOJO. We have:

Updated the bookshelf-inventory-impl-mock bundle to use iPOJO to register
its inventory implementation

Updated the bookshelf-service and bookshelf-service-tui to also use
iPOJO to register them and to inject their dependencies (BookInventory and
BookshelfService respectively.)

www.it-ebooks.info

http://www.it-ebooks.info/

10
Improving the Logging

Logging is one of the functionalities frequently given lower priority during
the development of an application; the price is usually paid later, when the
application does not behave as expected and there's the need to investigate
where things aren't right.

It's crucial that the components of an application log activity and unexpected
situations properly. This allows us to trace the root cause of issues, in which
scenarios they occur, and improves the chances of finding a fix for them.

In our case study so far, we've made poor use of logging and written a few
messages to the standard error stream when things went wrong. Now that
we've had a good look at the principles of integrating with an OSGi framework,
it's time to take a closer look at the logging side of things.

In this chapter, we will:

Learn a little bit about logging in general and in the context of OSGi

Look at the Apache Felix Log Service implementation and its log command

Update our bundles to use the framework logging system

On logging
Logging is an important facet of any application. When things don't go as expected, proper
logs provide a great deal of information that can be used in the troubleshooting and root
cause analysis activities.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[190]

Proper logging is a fine balance between giving useful contextual information and error
traces and keeping it at low volume to avoid visibility clutter and performance impact. Being
able to fine-tune the level of detail of the information that is received while the service
platform is available (at runtime) is a valuable functionality. It allows the operational support
team to drop down to a low level of details when additional information is needed, while
keeping the system at the highest performance when it is running as expected.

Logging levels
To better classify logged activity and error situations, a log entry is typically tagged with
a level of severity. The log levels defined for the OSGi Log Service are:

Level Name Level Severity Level Description

DEBUG 4 Use the 'debug' level to log relatively "verbose" information, usually
targeted at the developer/tester of the component.

Debug level log entries containing contextual information on the
details of the execution progress, they may contain information
such as entry into a method, the parameter values, algorithm steps,
return of calls, and so on.

INFO 3 Use the 'info' level to log light notifications on component activity
or changes in state.

Info level log entries do not contain information that relates to
error situations.

WARNING 2 Use the 'warning' level to notify the encounter of a situation that's
currently not a problem, but may be the hint of upcoming errors.
It may also be used to send a notification of an unexpected error
situation that was recovered.

Warning level logs must contain enough contextual information to
be used by a monitoring system for attempts to determine a root
cause or correlate multiple messages.

ERROR 1 Use the 'error' level to notify of encountered error situations that
require immediate attention.

Error level log entries are usually also accompanied with an
exception that was thrown. They must also contain enough
contextual information for use by monitoring systems.

The log severity represents that level numerically—severity 1 is the highest. This numeric
value is used to set a threshold on the level of logs to filter when showing log entries. For
example, a threshold at WARNING level (=2) would show only WARNING and ERROR (=1) log
entries, but not INFO and DEBUG.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[194]

The log levels are declared as constants in the same interface:

LOG_DEBUG: An integer with the value 4 for debug level logs

LOG_INFO: With value 3 for info logs

LOG_WARNING: With value 2 for warning logs

LOG_ERROR: With value 1 for error logs

To also pass an exception with the log entry, the signature with the Throwable parameter
is used:

log(int level, String message, Throwable exception)

The same methods are also provided with a ServiceReference as the first parameter:

log(ServiceReference sr, int level, String message)

log(ServiceReference sr, int level, String message,
 Throwable exception)

In this case, the log message is registered as relating to the bundle with the provided service
reference (instead of relating to the bundle invoking the log() method).

Usage of the Log Service
The Log Service is used just like any other service on an OSGi framework.

To get access to a Log Service instance using the service locator, the look-up is done with
the class name:

 LogService log = null;

 ServiceReference ref = context.getServiceReference(
 LogService.class.getName());
 if (ref != null)
 {
 log = (LogService) context.getService(ref);
 }

Using iPOJO, the LogService is declared as a field of the service:

 LogService log;

Then the field is declared for injection in the service component declaration in the
iPOJO configuration:

 <requires field="log" />

We will go through this again in a bit, when adding logging to our services.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[197]

The log command
The Felix Log Service also adds a shell command to inspect the log entries. The log
command takes an optional integer parameter to limit the number of log entries
displayed and another optional parameter for log-level filtering:

g! help log

log - display some matching log entries

 scope: felix

 parameters:

 int maximum number of entries

 String minimum log level [debug | info | warn | error]

log - display all matching log entries

 scope: felix

 parameters:

 String minimum log level [debug | info | warn | error]

The log-level filter shows log entries with a level smaller or equal to that passed. For
example, log info will show entries with levels info (=3), warn (=2), and error (=1).

For example, having just installed the Log Service, by listing the logs, we find the service
startup logs:

g! log 5 info

2010.09.22 15:27:57 INFO - Bundle: org.apache.felix.log -

 BundleEvent STARTED

2010.09.22 15:27:57 INFO - Bundle: org.apache.felix.log -

 [org.osgi.service.log.LogReaderService] - ServiceEvent REGISTERED

2010.09.22 15:27:57 INFO - Bundle: org.apache.felix.log -

 [org.osgi.service.log.LogService] - ServiceEvent REGISTERED

Here we have set a limit to the number of entries to show (5) and we filtered for info severity
logs previously.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[199]

 void info(String pattern, Object... args);
 void warn(String pattern, Object... args);
 void warn(String pattern, Throwable throwable, Object... args);
 void error(String pattern, Object... args);
 void error(String pattern, Throwable throwable, Object... args);
}

That's it for this bundle. Package it up and deploy it to the releases repository.

Let's implement the service next.

Time for action – creating the log helper implementation
The bookshelf-log-impl will provide a BookshelfLogHelper implementation that
keeps a reference to a Log Service and forwards log requests to it after processing their
message formatting.

Start another project, the bookshelf-log-impl bundle:

The following are the project identification information:

Group Id: com.packtpub.felix

Artifact Id: com.packtpub.felix.bookshelf-log-impl

Version: 1.10.0

Packaging: bundle

This bundle will have the bookshelf-log-api as a dependency because it implements
the service interface defined in it. It also has a dependency on the org.osgi.compendium
bundle, which defines the LogService interface.

Therefore, dependencies of this bundle are as follows:

 <dependencies>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-log-api</artifactId>
 <version>1.10.0</version>
 </dependency>
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>org.osgi.compendium</artifactId>
 <version>4.2.0</version>
 </dependency>
 </dependencies>

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[200]

This bundle also uses iPOJO for the injection of the LogService instance, as well as the
publishing of the service. We will look at the iPOJO configuration after implementing
the service.

Notice that neither of the previous dependencies is Felix-specific. Even though we have
selected the "Apache Felix Log Service" as a Log Service implementation, the bundle that
uses it does not depend on it. This bundle can be used on any framework with any Log
Service implementation.

Implementing the BookshelfLogHelper service
The implementation of the BookshelfLogHelper interface will be named
BookshelfLogHelperImpl and defined in the package com.packtpub.felix.
bookshelf.log.impl as follows:

public class BookshelfLogHelperImpl implements BookshelfLogHelper
{
 LogService log;

 public void debug(String pattern, Object[] args) {
 String message = MessageFormat.format(pattern, args);
 this.log.log(LogService.LOG_DEBUG, message);
 }

The caller passes a message pattern as a string and an array of arguments. Those are used
to construct a log message, which is mapped to the right LogService method signature.

Here we've used the java.text.MessageFormat Java class, which allows flexible
formatting for message text.

The pattern is encoded with placeholders that are used to insert the formatted arguments.
For example, the placeholder {n} is used for the insertion of the nth argument:

String pattern = "Expecting integer, got ''{0}''.";
Object[] args = new Object[] { "value" };
System.out.println(MessageFormat.format(pattern, args);

This would produce:

Expecting integer, got 'value'.

It also provides some additional cool formatting features—refer to the API Javadocs for
a detailed description. (http://download.oracle.com/javase/1.4.2/docs/api/
java/text/MessageFormat.html)

The remaining methods are similar, each calling a method from the LogService interface
using the appropriate log level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[201]

The iPOJO configuration for this service is as expected:

<ipojo>
 <component
 classname=
 "com.packtpub.felix.bookshelf.log.impl.BookshelfLogHelperImpl"
 name="BookshelfLogHelperImpl">

 <provides />
 <requires field="log" />
 </component>

 <instance
 component="BookshelfLogHelperImpl"
 name="bookshelf.log-helper.impl" />
</ipojo>

Complete the project configuration and then package and deploy it to the releases repository.

We are now ready to make changes to the bookshelf-service and
bookshelf-inventory-impl-mock bundles to use this newly created service.

Add logging to the bookshelf-service
In this section, we will add logging to the BookshelfServiceImpl class in the
bookshelf-service bundle by making it use the bookshelf-log-api calls instead of
System.out. We will also define our log messages a little more rigorously.

Time for action – updating the bundle POM
The BookshelfLogHelper interface is a new dependency to our project—it needs to be
added to the bookshelf-service POM:

 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-log-api</artifactId>
 <version>1.10.0</version>
 </dependency>

Now that the dependency is added, we can start making the changes to the bookshelf
service implementation class.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[202]

Time for action – updating the bookshelf service logging calls
Next, we'll edit the BookshelfServiceImpl class. Add the logger field (an instance of
BookshelfLogHelper). This will be set up for injection in a bit:

public class BookshelfServiceImpl implements BookshelfService
{
 private String sessionId;

 BookInventory inventory;

 BookshelfLogHelper logger;

For flexibility, we'll also add a getter for this field. This will allow us to change the means for
looking up the service easily, if it is needed in the future:

 private BookshelfLogHelper getLogger()
 {
 return this.logger;
 }

If you don't want to use iPOJO, then this is the place where you'd perform the service
look-up using a BundleContext instance, initialized during service construction.

In our case, we'll configure this property for injection in the iPOJO XML configuration file
(src/main/ipojo/meta.xml):

 <component
 classname=
 "com.packtpub.felix.bookshelf.service.impl.BookshelfServiceImpl"
 name="BookshelfServiceImpl">
 <provides />

 <requires field="inventory" />
 <requires field="logger" />

 </component>

The integration setup is now complete. We can carry on with the update of the bookshelf
service methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[203]

Time for action – logging to BookshelfLogHelper
We've gone through a few methods where we had printed to the System.out stream. It's
now time to replace them with calls to the BookshelfLogHelper service.

Next, I'll take two examples and comment on them. The others will be left for you to do on
your own:

 public MutableBook getBookForEdit(String session, String isbn)
 throws BookNotFoundException
 {
 getLogger().debug(LoggerConstants.LOG_EDIT_BY_ISBN, isbn);

 checkSession(session);
 MutableBook book = this.inventory.loadBookForEdit(isbn);
 debug("Got book for edit: " + book);
 return book;
 }

The call is logged as a debug message, including the ISBN parameter received by the method.
In this implementation, the checkSession() method also logs session check attempts
and failures.

Here a new interface was defined, the LoggerConstants interface, which holds the pattern
strings for the log messages. For example, the declaration for the above constant would be
as follows:

public interface LoggerConstants
{
 String LOG_EDIT_BY_ISBN =
 "LOG_EDIT_BY_ISBN: Get book for edit: [isbn={0}]";
}

Once the full bundle is migrated to use the BookshelfLogHelper service, this interface
would contain the listing of all log messages, along with the expected arguments for each.

Let's go back to the BookshelfServiceImpl and migrate another method, namely, the
addBook() method:

 public void addBook(
 String sessionId, String isbn, String title, String author,
 String category, int rating)
 throws BookAlreadyExistsException, InvalidBookException
 {
 getLogger().debug(LoggerConstants.LOG_ADD_BOOK,

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[204]

 isbn, title, author, category, rating);
 checkSession(sessionId);

 BookInventory inv = lookupBookInventory();

 getLogger().debug(LoggerConstants.LOG_CREATE_BOOK, isbn);
 MutableBook book = inv.createBook(isbn);
 book.setTitle(title);
 book.setAuthor(author);
 book.setCategory(category);
 book.setRating(rating);

 getLogger().debug(LoggerConstants.LOG_STORE_BOOK, isbn);
 inv.storeBook(book);
 }

It's typical to log something before an operation that may fail to keep a record of its context
in the log files. In our case, the operations that may fail are the check for the session, the
creation of the book, and its update in the store.

The above log calls have resulted in the following additional constants in the
LogConstants interface:

 String LOG_ADD_BOOK =
 "LOG_ADD_BOOK: Add book: [isbn={0}] [title={1}] "+
 "[author={2}] [category={3}] [rating={4}]";

 String LOG_CREATE_BOOK =
 "LOG_CREATE_BOOK: Create new book [isbn={0}]";

 String LOG_STORE_BOOK =
 "LOG_STORE_BOOK: Store book [isbn={0}]";

The above messages can easily be recognized by an external monitoring system and parsed
for useful information.

Update bookshelf-service-tui dependency
The one last thing to do before we're ready to test our changes is to update the
bookshelf-service-tui dependency on the bookshelf-service.

Having released the bookshelf-service bundle with a new version (1.10.0), edit the
bookshelf-service-tui project descriptor and update the dependency version:

 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-service</artifactId>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[206]

The log helpers belong to the "Common Services" layer on start level 1.

g! bundlelevel -i 1

g! deploy -s "Bookshelf Log Helper API"

Target resource(s):

 Bookshelf Log Helper API (1.10.0)

Deploying...done.

g! deploy -s "Bookshelf Log Helper Impl"

Target resource(s):

 Bookshelf Log Helper Impl (1.10.0)

Deploying...done.

The bundle listing should be as follows:

g! lb

START LEVEL 5

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Apache Felix iPOJO (1.6.4)

 6|Active | 2|Bookshelf Inventory Impl - Mock (1.9.0)

 7|Active | 2|Bookshelf Inventory API (1.5.0)

 8|Active | 3|Bookshelf Service (1.10.0)

 9|Active | 3|Bookshelf Log Helper API (1.10.0)

 10|Active | 5|Apache Felix iPOJO Gogo Command (1.0.0)

 11|Active | 5|Bookshelf Service Gogo commands (1.10.0)

 12|Active | 1|Apache Felix Log Service (1.0.0)

 13|Active | 1|Bookshelf Log Helper Impl (1.10.0)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Logging

[208]

Using other Log Service implementations
In most situations, you'll need a more complete logging implementation—to log to a file or
send log messages to a remote logging system.

Fortunately, replacing the logging implementation does not impact the bundles that use the
Log Service. Here are a few to look at (among others):

Pax Logging

Apache Sling

Eclipse Equinox Log Service

Some others may also have emerged by the time you read this.

Summary
In this chapter, we've covered logging in the context of an OSGi framework. We have:

Learned about some logging principles

Looked at the Log Service architecture

Gotten an introduction to the Apache Felix Log Service and the log command

We also covered the following:

Implemented logging using the LogService in our bundles

Inspected the resulting logs

www.it-ebooks.info

http://www.it-ebooks.info/

11
How About a Graphical Interface?

Most applications would require more than a command-line interface
for human interaction. The majority of operations, except for a few
administrative tasks, would be best exposed to the user in the form
of a nice graphical frontend.

In this chapter, we work towards implementing a simple servlet-based
graphical interface for the bookshelf case study, in which we will expose
some of the operations that we've implemented earlier.

In this chapter, you will:

Learn a bit about the OSGi Http Service

Look at the Felix Http Service and Felix Http Whiteboard implementations

Create our bookshelf-servlet bundle, a simple first stab at a web application-based
graphical interface

Se let's start with some context around HTTP services on an OSGi framework.

The OSGi HTTP Service
In Chapter 10, Improving the Logging, we saw the Log Service, one of the service interfaces
defined in the OSGi compendium specification. In this chapter, we'll see another one,
namely, the Http Service.

The Http Service provides a means for bundles to expose servlets or resources to be accessed
through Http and to provide content in HTML, XML, and so on. The bundles register their
content and servlets in a dynamic manner, providing context information as part of
the registration.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How About a Graphical Interface?

[214]

For our project, we will use the implementation with embedded Jetty. This will save us the
need to install and configure an external web server. We will also use the whiteboard-based
registration right away. Let's install those two bundles now, before going on to implementing
the servlet bundle.

Time for action – installing the Apache Felix Http Service
You will install Felix Http Service (which includes an embedded Jetty server) and the Felix
Http Whiteboard implementation. It's straightforward:

g! bundlelevel -i 4

g! deploy -s "Apache Felix Http Jetty"

Target resource(s):

 Apache Felix Http Jetty (2.0.4)

Deploying...done.

g!

g! deploy -s "Apache Felix Http Whiteboard"

Target resource(s):

 Apache Felix Http Whiteboard (2.0.4)

Deploying...done.

The environment is now ready to receive bundles that register HttpServlet services.

We've kept the default configuration in place. It can be modified either by setting configuration
properties or by the means of the Configuration Admin service.

For more details on the service and its configuration, refer to the documentation page:
http://felix.apache.org/site/apache-felix-http-service.html.

A simple bookshelf web application
Alright, we're now ready to implement our first servlet. We'll call the bundle
bookshelf-servlet and start with version 1.11.0.

Create this new project and configure its POM. This bundle will use iPOJO for the
servlet registration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[215]

The following are the required dependencies:

 <dependencies>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.5</version>
 </dependency>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-service</artifactId>
 <version>1.10.0</version>
 </dependency>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>
 com.packtpub.felix.bookshelf-inventory-api</artifactId>
 <version>1.5.0</version>
 </dependency>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-log-api</artifactId>
 <version>1.10.0</version>
 </dependency>
 </dependencies>

Notice the re-use of our log wrapper service.

Time for action – implementing the servlet
The bundle will contain one class, the servlet implementation; we'll configure the rest as
iPOJO declarations.

In the accompanying code, the servlet class is defined in the package com.packtpub.
felix.bookshelf.servlet. We'll start with a skeleton to define the iPOJO injection
points and complete the configuration.

public class BookshelfServletImpl extends HttpServlet
{
 private String alias;

 private BookshelfService service;

 private BookshelfLogHelper logger;

 private String sessionId;

 public void init(ServletConfig config) {
 }

www.it-ebooks.info

http://www.it-ebooks.info/

How About a Graphical Interface?

[216]

 protected void doGet(
 HttpServletRequest req, HttpServletResponse resp)
 {
 }
}

We'll give the method doGet() a fuller body in a bit. Let's configure the iPOJO declarations.

The iPOJO configuration
The iPOJO configuration declares the component as providing a service. From the point of
view of iPOJO, this component is a regular service that has requirements and capabilities.
The fact that it extends HttpServlet will be of interest to the Http Whiteboard at
activation time.

<ipojo>
 <component
 name="BookshelfServletImpl"
 classname=
 "com.packtpub.felix.bookshelf.servlet.BookshelfServletImpl"
 immediate="true">

 <provides>
 <property name="alias" field="alias" />
 </provides>

The alias property will be used by the whiteboard pattern implementation to publish
the servlet.

The component also requires injection of the service field (a BookshelfService) and
the logger field (a BookshelfLogHelper):

 <requires field="service" />
 <requires field="logger" />
 </component>

The instance declaration sets the alias value to /bookshelf.

 <instance
 name="bookshelf.servlet"
 component="BookshelfServletImpl">

 <property name="alias" value="/bookshelf" />
 </instance>
</ipojo>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[217]

This will delegate processing of requests to http://localhost:8080/bookshelf to our
servlet implementation BookshelfServletImpl.

Implementing the operations
Okay, let's implement the servlet's doGet() method to process the following requests:

Listing of categories: Requested with the operation categories.

Listing of books by category: Requested using the byCategory operation, with the
parameter category as the search filter.

Listing of books by author: Requested using the byAuthor operation, with the
parameter author as the search filter.

Adding a book: Requested using the addBook operation, with the parameters isbn,
author, title, category, and rating. An additional operation, addBookForm,
provides the html form for submitting the addBook operation.

Let's start by preparing the constants for those operations.

Time for action – declaring the parameter constants
The servlet is a simple implementation that behaves based on the value of an 'operation'
parameter (op) that is passed as part of the request.

 private static final String PARAM_OP = "op";

The op operation can take one of the values: categories, byCategory, byAuthor,
addBookForm, and addBook.

The categories operation requests a listing of the currently registered categories.

 private static final String OP_CATEGORIES = "categories";

The byCategory and byAuthor operations request a listing of the books in a given
category and by a given author, respectively.

 private static final String OP_BYCATEGORY = "byCategory";
 private static final String OP_BYAUTHOR = "byAuthor";

Their category and author parameters are passed using:

 private static final String PARAM_CATEGORY = "category";
 private static final String PARAM_AUTHOR = "author";

The addBookForm operation requests the display of the form for adding a book:

 private static final String OP_ADDBOOKFORM = "addBookForm";

www.it-ebooks.info

http://www.it-ebooks.info/

How About a Graphical Interface?

[218]

It will pass the parameters of the book using the category and author keys, as defined
previously along with the isbn, title, and rating:

 private static final String PARAM_ISBN = "isbn";
 private static final String PARAM_TITLE = "title";
 private static final String PARAM_RATING = "rating";

The parameters for adding a book are passed to the addBook operation as follows:

 private static final String OP_ADDBOOK = "addBook";

And last, but not least, the authentication form is displayed with the loginForm operation
and the authentication request using the login operation, along with the user and
pass parameters.

 private static final String OP_LOGINFORM = "loginForm";
 private static final String OP_LOGIN = "login";
 private static final String PARAM_USER = "user";
 private static final String PARAM_PASS = "pass";

Those constants will be used in the code and embedded in the generated HTML.

Time for action – implementing the operations
We won't go through the whole servlet implementation code. For that, I suggest you
download the accompanying code for this chapter.

The servlet will provide HTTP GET operations by overriding doGet():

 protected void doGet(
 HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, java.io.IOException {

Retrieve the operation parameter and prepare the response content type:

 String op = req.getParameter(PARAM_OP);
 resp.setContentType("text/html");

 this.logger.debug(
 "op = " + op + ", session = " + this.sessionId);

Then check authentication-related operations. If the operation is a login request, then it
is executed:

 if (OP_LOGIN.equals(op))
 {
 String user = req.getParameter(PARAM_USER);
 String pass = req.getParameter(PARAM_PASS);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[219]

 try
 {
 doLogin(user, pass);
 htmlMainPage(resp.getWriter());
 }
 catch (InvalidCredentialsException e)
 {
 htmlLoginForm(resp.getWriter(), e.getMessage());
 }
 return;
 }

Otherwise, if it's a request for displaying the login form, or if the session is not valid, then the
login form is displayed:

 else if (OP_LOGINFORM.equals(op) || !sessionIsValid())
 {
 htmlLoginForm(resp.getWriter(), null);
 return;
 }

With the authentication checks out of the way, we then check the operations and process
them. The default page is the welcome page:

 try {
 if (op == null)
 {
 htmlMainPage(resp.getWriter());
 }

Then, in the case of each known operation, call the appropriate response method as follows:

 else if (OP_CATEGORIES.equals(op))
 {
 htmlCategories(resp.getWriter());
 }
 else if (OP_BYCATEGORY.equals(op))
 {
 String category = req.getParameter(PARAM_CATEGORY);
 htmlByCategory(resp.getWriter(), category);
 }
 else if (OP_BYAUTHOR.equals(op))
 {
 String author = req.getParameter(PARAM_AUTHOR);
 htmlByAuthor(resp.getWriter(), author);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

How About a Graphical Interface?

[220]

 else if (OP_ADDBOOKFORM.equals(op))
 {
 htmlAddBookForm(resp.getWriter());
 }
 else if (OP_ADDBOOK.equals(op))
 {
 htmlTop(resp.getWriter());
 doAddBook(req, resp);
 htmlBottom(resp.getWriter());
 }

If the operation is not recognized, then just display the welcome page:

 else
 {
 htmlMainPage(resp.getWriter());
 }
 }
 catch (InvalidCredentialsException e)
 {
 resp.getWriter().write(e.getMessage());
 }
 }

We'll look at the details of the categories operations now (and addBook a little later).

The htmlCategories() method is called, when processing the categories operation,
to display the list of currently registered categories:

 private void htmlCateories(PrintWriter printWriter)
 throws InvalidCredentialsException
 {
 htmlTop(printWriter);

 printWriter.println("<h3>Categories:</h3>");
 printWriter.println("");

 for (String category : this.service.getCategories(session))

 {
 printWriter.println(
 "<a href=\"" + browseByCategoryUrl(category)
 + "\">" + category + "");
 }

 printWriter.println("");
 htmlBottom(printWriter);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[223]

Executing the addBook operation is a matter of extracting the parameters and calling the
appropriate method from BookshelfService.

 private void doAddBook(
 HttpServletRequest req, HttpServletResponse resp)
 throws IOException
 {
 String isbn = req.getParameter(PARAM_ISBN);
 String category = req.getParameter(PARAM_CATEGORY);
 String author = req.getParameter(PARAM_AUTHOR);
 String title = req.getParameter(PARAM_TITLE);
 String ratingStr = req.getParameter(PARAM_RATING);
 int rating = 0;
 try
 {
 rating = Integer.parseInt(ratingStr);
 }
 catch (NumberFormatException e)
 {
 resp.getWriter().println(e.getMessage());
 return;
 }

 try
 {
 this.service.addBook(
 session, isbn, title, author, category, rating);
 }
 catch (Exception e)
 {
 resp.getWriter().println(e.getMessage());
 return;
 }
 resp.getWriter().println("Added!");
 }

Have a go hero – implementing the remaining operations
Pretty straightforward, so do you think you can implement the remaining methods?

The htmlByAuthor() can be both the search and result display page. It would omit the
results section when the author property is not set.

It's not worth spending any time on the aesthetics of the graphical interface. We will soon
re-implement this using JSP.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How About a Graphical Interface?

[226]

Pop Quiz
1. Which design pattern is one where a component requests a service from service

registrar?

a. The whiteboard pattern

b. The service locator pattern

c. The dependency injection

2. How can you register a servlet with an Http Service?

a. Invoke the registerServlet method

b. Through the Http Service whiteboard extension and register the
servlet with the bundle context

c. Through the Http Service whiteboard extension and using iPOJO
to register the servlet

d. All of the above

Summary
In this chapter, we've started the exploration of the "web" side of OSGi and its available
services and we've implemented our first (very simple) graphical interface to the bookshelf.

You have:

Learned about the OSGi Http Service, its architecture, and the way to register
servlets with it

Learned about the whiteboard pattern and its application in OSGi

Covered the Felix Http Service and Felix Http Whiteboard implementations and
installed them

Then you have:

Implemented the bookshelf-servlet bundle with a simple servlet-based
graphical interface implementation

Now that we've started playing with web applications, in the next chapter, we will look at a
useful one that helps manage the framework—the Felix Web Console.

www.it-ebooks.info

http://www.it-ebooks.info/

12
The Web Management Console

So far, we've used the command-line Text UI to administer our Felix instance.
It's a good interface when the administrator has direct access to the host where
Felix is running.

However, in many situations, especially on production platforms, the backend
servers and their OS processes are managed by monitoring systems that ensure
they are running and restart them when they fail. In those cases, it's hard to
have and keep a command-line interface such as the one provided by default.

There are services that provide the same kind of command-line shell access
remotely, through Telnet, if a command-line operation is necessary or a
graphical interface is not possible.

However, when possible, it's easier to manage a set of services graphically.
Using a graphical interface improves the readability of the provided content
by structuring it and displaying it with a nice style. The Web Management
Console is an extension that registers itself with the Http Service and provides a
Graphical User Interface (GUI) for the management of the instance.

In this chapter, you will:

Install the Felix Web Management Console

Learn how to transform a regular JAR for use in an OSGi framework

Take a brief walk around it, going through some of its menu tabs

Extend it with the iPOJO WebConsole Plugins, which extend the Web Console with
the iPOJO inspection functionality

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Web Management Console

[230]

The following are the steps to follow:

1. Download the dependency and save it somewhere on your disk. It can be
found in the Maven repository used previously: http://repo2.maven.org/
maven2/org/json/json/20090211/json-20090211.jar. I've saved the
JAR in the following directory: P:/projects/felixbook/repackaged/.

2. Unzip it and edit the META-INF/MANIFEST.MF. Not a lot of headers are needed for
a simple library dependency—the exported packages and a few additional headers
for a clean display and proper version registration (for potential updates later).

The Manifest should look like the following:

Manifest-Version: 1.0
Created-By: 1.6.0_07 (Sun Microsystems Inc.)
Export-Package: org.json
Bundle-Name: JSON
Bundle-Version: 20090211
Bundle-SymbolicName: org.json

3. Re-bundle the JAR with the updated manifest, using a ZIP archiver. Ensure
that the files in the archive are under the correct root. This is a common
JAR manipulation human error. In this case, the classes must be under
org/json. To keep the original JAR separate from the repackaged JAR,
I've repackaged the updated one as json-20090211-osgi.jar.

4. Install and start it on the framework:

g! repack = file:///P:/projects/felixbook/repackaged/

g! start $repack/json-20090211-osgi.jar

The dependencies should now be satisfied and the result should be:

g! lb

START LEVEL 5

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.5.0)

 6|Active | 1|Apache Felix iPOJO (1.6.4)

 7|Active | 2|Bookshelf Inventory Impl - Mock (1.9.0)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Web Management Console

[238]

Summary
In this chapter, we've installed and gone through a brief overview of the Felix Web
Management Console bundle, which provides a graphical management interface
alternative to the command-line TUI.

We've covered the following:

The Web Console install procedure

How to use a JAR library that's not OSGi-enabled

We've also:

Had a quick overview of the Web Console

Extended it with the iPOJO plugins

www.it-ebooks.info

http://www.it-ebooks.info/

13
Improving the Graphics

In Chapter 11, How about a Graphical Interface?, we've implemented a
servlet-based graphical user interface, giving web access to our bookshelf
service. However, as you must have noticed, writing servlets for generating
HTML is tedious. One quickly finds it useful to move to JSP.

In this chapter, we will look at OSGi Web Containers, opening the door to the
world of web applications. We'll look at how to use a Web Container to register
JSP resources by implementing the bookshelf-webapp bundle.

You will learn about the following:

Web Containers and their use in the context of an OSGi framework

Pax Web, an Http Service extension that provides Web Containers

How to install Pax Web to our local Felix instance

You will also:

Create the bookshelf-webapp bundle and implement it with JSP

Learn how to register the JSPs with the Web Container

Learn how to get a service reference from the JSP code

So let's get started with Web Containers.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Graphics

[240]

OSGi Web Containers
The OSGi specifications are in continuous evolution to meet the market needs. As a result of
recent interaction that has gone on between members from OSGi and SpringSource teams,
concepts around the support for web applications, and their integration in a simple manner
in an OSGi framework have been compiled, and OSGi Web Containers were introduced in the
OSGi Service Platform Enterprise Specification.

The idea behind a Web Container is to extend on the Http Service functionality to allow for
the registration of additional content such as JSPs, registration of filters to the Http Service
namespace, as well as the ability to react to lifecycle changes in the context. In our case,
for example, we'll register resources (stylesheets) and JSPs.

Another goal would be to simplify the deployment of Web Application Bundles (WABs) by
specifying a Web-ContextPath header in the manifest.

There are a few bundles out there that provide Web Container services. A good
implementation is SpringSource's Spring dm Server (SpringSource is a division of VMware),
which is the reference implementation of the specification. For the relative ease of
installation and configuration, we'll use Pax Web for this example.

Pax Web
The Pax Web bundle set, by the Open Participation Software for Java (OPS4J) community,
is an OSGi Http Service extension that attempts an implementation of the Web Container
functionality along with a set of extensions for JSP and WAR support. Although it may not
be up-to-date with the final specifications that were released (see later), it will do the job
we need.

In this chapter, we will replace the HTTP service implementation we installed in Chapter 11
with the following bundles from Pax Web:

OPS4J Pax Web - Jetty Bundle: The Pax Web implementation with the Jetty Web
Container embedded

OPS4J Pax Web - Extender - WAR: Extender for WAR support

OPS4J Pax Web - Jsp Support: JSP support for the container

Read more on Pax Web at the following address: http://wiki.ops4j.org/display/
paxweb/Pax+Web.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[241]

Time for action – installing the Pax Web bundles
Let's prepare the framework by uninstalling the previous Http Service implementation and
installing those bundles listed previously.

Uninstall previous http support
We will install the Pax Web bundles on start level 4, which contains frontend support
functionality.

Let's start by dropping to start level 3 (for Tier 1 Service Providers maintenance) and
uninstalling the previously used http implementation bundles:

g! frameworklevel 3

g! lb

START LEVEL 3

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.5.0)

 6|Active | 1|Apache Felix iPOJO (1.6.4)

 7|Active | 2|Bookshelf Inventory Impl - Mock (1.9.0)

 8|Active | 1|Bookshelf Log Helper API (1.10.0)

 9|Active | 1|Apache Felix Log Service (1.0.0)

 10|Active | 1|Bookshelf Log Helper Impl (1.10.0)

 11|Active | 3|Bookshelf Service (1.10.0)

 12|Resolved | 5|Apache Felix iPOJO Gogo Command (1.0.0)

 13|Resolved | 5|Bookshelf Service Gogo commands (1.10.0)

 14|Resolved | 4|Apache Felix Http Jetty (2.0.4)

 15|Resolved | 4|Apache Felix Http Whiteboard (2.0.4)

 16|Resolved | 5|Bookshelf Servlet (1.11.0)

 17|Active | 1|Apache Commons IO Bundle (1.4.0)

 18|Active | 1|Apache Commons FileUpload Bundle (1.2.1)

 19|Active | 1|JSON (20090211.0.0)

 20|Resolved | 5|Apache Felix Web Management Console (3.1.2)

 21|Resolved | 5|Apache Felix iPOJO WebConsole Plugins (1.4.4)

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Graphics

[242]

The bundles we want to uninstall are Apache Felix Http Jetty and Apache Felix Http
Whiteboard. We'll also uninstall the BookshelfServlet bundle, as it will no longer
be needed.

g! uninstall 14 15 16

Install PAX Web bundles
We will install the Pax Web bundles directly from the links provided on the project download
page (http://wiki.ops4j.org/display/paxweb/Download).

The Pax Web main bundle, with Jetty embedded:

g! bundlelevel -i 4

g!

g! ops4j = http://repo2.maven.org/maven2/org/ops4j/pax/web/

g!

g! start $ops4j/pax-web-jetty-bundle/0.7.3/pax-web-jetty-bundle-0.7.3.jar

The web extender bundle:

g! start $ops4j/pax-web-extender-war/0.7.3/pax-web-extender-war-0.7.3.jar

And the JSP support Pax Web extension:

g! start $ops4j/pax-web-jsp/0.7.3/pax-web-jsp-0.7.3.jar

Double-check the http service implementation
To make sure the http service implementation replacement was successful, go back to start
level 5 (Tier 1 services):

g! frameworklevel 5

g! lb

START LEVEL 5

 ID|State |Level|Name

 0|Active | 0|System Bundle (3.0.1)

 1|Active | 1|Apache Felix Bundle Repository (1.6.2)

 2|Active | 1|Apache Felix Gogo Command (0.6.0)

 3|Active | 1|Apache Felix Gogo Runtime (0.6.0)

 4|Active | 1|Apache Felix Gogo Shell (0.6.0)

 5|Active | 2|Bookshelf Inventory API (1.5.0)

 6|Active | 1|Apache Felix iPOJO (1.6.4)

 7|Active | 2|Bookshelf Inventory Impl - Mock (1.9.0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[243]

 8|Active | 1|Bookshelf Log Helper API (1.10.0)

 9|Active | 1|Apache Felix Log Service (1.0.0)

 10|Active | 1|Bookshelf Log Helper Impl (1.10.0)

 11|Active | 3|Bookshelf Service (1.10.0)

 12|Active | 5|Apache Felix iPOJO Gogo Command (1.0.0)

 13|Active | 5|Bookshelf Service Gogo commands (1.10.0)

 17|Active | 1|Apache Commons IO Bundle (1.4.0)

 18|Active | 1|Apache Commons FileUpload Bundle (1.2.1)

 19|Active | 1|JSON (20090211.0.0)

 20|Active | 5|Apache Felix Web Management Console (3.1.2)

 21|Active | 5|Apache Felix iPOJO WebConsole Plugins (1.4.4)

 22|Active | 4|OPS4J Pax Web - Jetty Bundle (0.7.3)

 23|Active | 4|OPS4J Pax Web - Extender - WAR (0.7.3)

 24|Active | 4|OPS4J Pax Web - Jsp Support (0.7.3)

You can use the Felix Web Management Console to test that the replacement was successful.
It should both work exactly as it did before.

What just happened?
In the steps we've just followed, we have replaced the OSGi Http Service implementation
we're using: we've switched from the Apache Felix Http Service to the Pax
Web implementation.

From a strict point of view, it is not necessary to change start levels before applying this
replacement. However, it's usually a good idea to drop the level and put the frontend
support in maintenance mode while changing the http service implementation.

The framework is now ready to receive web application bundle deployments, so let's
start writing ours.

Our bookshelf-webapp
We'll implement a simple JSP application to investigate the way the web application
integrates with the the framework services. The examples will cover some of the bookshelf
service operations. Let's say:

Listing the categories, which will also be the main page (the index), it displays a
list of the categories in the bookshelf, each entry linking to the 'list books in a
category' page.

Listing the books in a category, given a category name as parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Graphics

[244]

Searching for books by filtering on author takes an author as search criterion and
displays a list of results. This page will link to itself displaying the search bar on top
of the results.

Adding a book to the bookshelf, which is made of a submit form page which takes
in the user input and a confirmation page.

We'll also need a few pages dealing with authentication and session management.

Those pages will embed commonly used JSP chunks. For example, the initialization code or
the code that checks if the session is valid, as well as the common menu at the top of most
pages. The result display code is also broken down to chunks that can be included into pages.

The JSP application we'll implement is simple. It doesn't make use of many of JSP's cool
extensions; it focuses on the OSGi bits. It's up to you to turn it into the JSP app of your dreams.

Time for action – creating the bookshelf-webapp bundle
Let's start by creating a new project for the bookshelf web application. I've chosen the name
bookshelf-webapp. Its project descriptor is very close to the others. For now, just take a
copy of one of the others; we'll come back to it in a bit to add the dependencies and slightly
modify the bundle plugin configuration.

The artifact identification section will look like:

 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-webapp</artifactId>
 <version>1.13.0</version>
 <packaging>bundle</packaging>
 <name>Bookshelf Web-App</name>

The structure of the code base will contain both Java code and resources. The resources of
this WAB will be located under ./src/main/resources/ and are structured as follows:

./: The root of the directory for JSP files

./WEB-INF: For the web application configuration, namely, the web.xml file

./css: For the cascading stylesheets

Let's look at the OSGi configuration and the contents of the simple web.xml file in the
next section.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[247]

Also, the JSP code will need the classes from the Servlet API, as well as those from the
bookshelf-service (for operation requests) and from the bookshelf-inventory-api
(for the Book bean interface):

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.5</version>
 </dependency>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>com.packtpub.felix.bookshelf-service</artifactId>
 <version>1.10.0</version>
 </dependency>
 <dependency>
 <groupId>com.packtpub.felix</groupId>
 <artifactId>
 com.packtpub.felix.bookshelf-inventory-api</artifactId>
 <version>1.5.0</version>
 <optional>false</optional>
 </dependency>

There will be one more change to this file before it is ready; we'll come back to it. Let's move
onto how the JSP integrates with the OSGi framework.

Getting a service reference in JSP
Access to OSGi framework functionality from a JSP is very simple. The Web Container
will prepare the servlet context with the bundle's OSGi bundle context bound to the
osgi-bundlecontext attribute.

The Java code can be embedded in the JSP as follows:

<% BundleContext ctx = (BundleContext)
 getServletContext().getAttribute("osgi-bundlecontext");

This bundle context is the same that would have been passed to a BundleActivator,
if one were defined.

 ServiceReference ref =
 ctx.getServiceReference(BookshelfService.class.getName());

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Graphics

[248]

Getting an instance of the BookshelfService is then straightforward:

 BookshelfService bookshelf =
 (BookshelfService) ctx.getService(ref);
%>

Alternatively, the code can be moved outside of the JSP, into a JavaBean. We will create a
SessionBean, in which will be kept references to session information such as the bookshelf
service reference and the session ID.

Time for action – writing the session bean
The SessionBean class definition is straightforward. It will be placed in the package
com.packtpub.felix.bookshelf.webapp.beans.

public class SessionBean
{
 static final String OSGI_BUNDLECONTEXT = "osgi-bundlecontext";

 private BundleContext ctx;

 private String sessionId;

 public void initialize(ServletContext context) {
 this.ctx = (BundleContext)
 context.getAttribute(OSGI_BUNDLECONTEXT);
 }

The bean's initialize() and getBookshelf() methods together hold similar code
to the code that would have been embedded in the JSP, as described previously.

Here, initialize() takes the ServletContext as the parameter and keeps it for later
use in getBookshelf() to retrieve the service reference:

 public BookshelfService getBookshelf() {
 ServiceReference ref = ctx.getServiceReference(
 BookshelfService.class.getName());
 BookshelfService bookshelf =
 (BookshelfService) ctx.getService(ref);
 return bookshelf;
 }

It also holds a shortcut for checking if the session is valid:

 public boolean sessionIsValid() {
 return getBookshelf().sessionIsValid(getSessionId());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[249]

The rest of its methods are the setters and getters for the bookshelf and
sessionId properties.

This bean will be defined in a common JSP, init-no-check.inc.jsp, which declares the
variable sessionBean and initializes it with the servlet context when the bean is created:

<jsp:useBean id="sessionBean"
 class="com.packtpub.felix.bookshelf.webapp.beans.SessionBean"
 scope="session">
 <% sessionBean.initialize(getServletContext()); %>
</jsp:useBean>

From this point on, any JSP that includes this block has reference to the bookshelf service by
calling sessionBean.getBookshelf().

What just happened?
At the point when the Web Container picks up a JSP and makes a servlet out of it, it will
create a servlet context assigned to it. This servlet context is populated with a reference
to the bundle context of the bundle holding the JSP.

Here we had passed this servlet context to our bean when it was created. It will use it to
initialize its BookshelfService reference, which will be available through its getter.

Complete the authentication pages
The main initialization JSP is init.inc.jsp, which in addition to initializing also checks if
the sessionId is valid.

<%@ include file="init-no-check.inc.jsp" %>
<% // check session
 if (!sessionBean.sessionIsValid()) {
 response.sendRedirect("login.jsp");
 }
%>

If the session is not valid, it redirects the user to the login.jsp page. Otherwise, the rest of
the page is loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[251]

Time for action – using the service
For example, let's implement the list categories functionality in index.jsp. Our index page
will list the available categories. For that, it accesses the bookshelf service instance that was
stored in the session.

<%@ page import="java.util.Set"%>

<%@ include file="init.inc.jsp" %>

<html>
 <head>
 <title>Bookshelf - Browse Categories</title>
 <link rel="stylesheet" type="text/css" href="css/style.css" />
 </head>
<body>
 <%@ include file="menu.inc.jsp" %>

 <h2>Bookshelf - Browse Categories</h2>
 <% Set<String> categories =
 sessionBean.getBookshelf().getCategories(
 sessionBean.getSessionId());
 %>
 <% for (String category : categories) { %>

 <a href="byCategory.jsp?category=<%= category %>">
 <%=category%>

 <% }
 %>
</body>
</html>

Each entry in the list links to the byCategory.jsp page, which takes a category as a
parameter and lists the books in that category.

The menu.inc.jsp file is a menu table with links to the available operations. It is not
listed here.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[253]

Implement the remaining pages
The remaining pages aren't too complex. I'll go through the list of the next one. I'll leave the
remaining ones out to avoid repetition.

Time for action – implementing the list books by category page
The list books by category page (byCategory.jsp) will have a similar beginning as the list
categories page. The page starts with the imports and the included initialization JSP.

<%@ page import="java.util.*"%>

<%@ include file="init.inc.jsp" %>

This page takes a category as parameter:

<% // get category to browse, if none go to categories view
 String category = request.getParameter("category");
 if (category==null || category.equals("")) {
 response.sendRedirect("index.jsp");
 }
%>

<html>
 <head>
 <title>Bookshelf - Browse Category: <%= category %></title>
 <link rel="stylesheet" type="text/css" href="css/style.css" />
 </head>
 <body>

Include the menu bar:

 <%@ include file="menu.inc.jsp" %>
 <h2>Bookshelf - Browse Category: <%= group %></h2>

Then perform the search operation, based on the passed group parameter:

 <%@ include file="menu.inc.jsp" %>
 <h2>Bookshelf - Browse Category: <%= category %></h2>

 <%
 Set<String> isbns =
 sessionBean.getBookshelf().searchBooksByCategory(
 sessionBean.getSessionId(), category); %>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[255]

However, the bundle plugin does not analyze the JSP's <%@ page import directives, for
example, the JSP included when listing book entries, bookListEntry.inc.jsp, shown
here. It imports the package com.packtpub.felix.bookshelf.inventory.api, which
is not imported by the class SessionBean.

<%@page import="com.packtpub.felix.bookshelf.inventory.api.*" %>

<%@include file="init.inc.jsp" %>

<% String isbn = request.getParameter("isbn");

 Book book = null;
 try {
 book = sessionBean.getBookshelf().getBook(
 sessionBean.getSessionId(), isbn); %>
 <tr class="BookListEntry">
 <td><%= book.getCategory() %></td>
 <td><%= book.getIsbn() %></td>
 <td><%= book.getTitle() %></td>
 <td><%= book.getAuthor() %></td>
 <td><%= book.getRating() %></td>
 </tr>
<% }
 catch (BookNotFoundException e) { %>
 <tr class="BookListEntry">
 <td>-</td>
 <td><%= isbn %></td>
 <td>"<%= e.getMessage() %>"</td>
 <td>-</td>
 <td>-</td>
 </tr>
<% }
%>

Imports of packages in JSPs must be manually declared in the POM (using Import-Package)
when they are not imported by a Java class in the same bundle. If they are not, the generated
servlet will fail at runtime because it cannot see the classes of that package.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[259]

Pop Quiz
1. Which service interface would you use to register a set of JSP pages from a web

application bundle?

a. Web Container

b. Web Context

c. Service Reference

2. How do you get access to a service from within a JSP?

a. Use the BundleContext provided at construction

b. Use the servlet context, retrieving the osgi-bundlecontext attribute

c. Use injection

Summary
Using a Web Container in an OSGi framework improves the servlet development experience
by extending the Http Service with JSP and WAR support.

In this chapter, we've looked a little closer at Web Containers and implemented the
bookshelf-webapp. We've also improved the graphical interface to the bookshelf-service.

By now, you should know the following:

What Web Containers are and the benefits they give

About Pax Web and its extensions

How to install Pax Web and its extensions

How to register JSPs with the Web Container

How to interact with a service from the JSP code

www.it-ebooks.info

http://www.it-ebooks.info/

14
Pitfalls and Troubleshooting

The sequence of steps described in this book's chapters guided you in
constructing the case study. If you have followed these steps faithfully, you
should not have encountered any major issues in building the components
of this project.

As I have worked on this application, starting from scratch, going through the
same steps, I've written the issues that I've encountered down here. I have also
added a few that I had seen earlier.

This is by far not a complete list of the things that can possibly go wrong; the
online forums and FAQ pages hold a wealth of information and answers to
problems that other beginners and more advanced users have encountered.
Be sure to consult those useful resources when you're stuck!

We'll also look at a few ways to troubleshoot your application to find hints on
what's causing it to misbehave, as part of a root cause analysis activity.

The following are the common pitfalls that we'll look at in this chapter:

I start my bundle, but nothing happens

I update my bundle, but I can't see any change

I refresh my OBR, but the bundles don't get updated

The artifact JAR I need doesn't have OSGi entries in its manifest

I get a "No impl service available." error with any TUI command

I get a "No LogReaderService available" error with the log command

www.it-ebooks.info

http://www.it-ebooks.info/

Pitfalls and Troubleshooting

[262]

I can't add/connect to an OBR

I'm getting a "Jsp support is not enabled" error message

My JSP can't find a class that it needs

We'll also look at the following troubleshooting tips:

How to get debug logs from the Felix Log Service

How can remote debugging help?

Where to get answers online

Common pitfalls
This section describes some of the issues that may be encountered when developing an
application on an OSGi framework in general and on the Felix framework in specific. Be sure
to also read the next section, which shows a few ways to investigate your issue in an attempt
to discover the root cause.

I start my bundle but nothing happens
I've created a bundle which includes a BundleActivator implementation and installed it
onto the OSGi framework. When I start the bundle, I'm expecting a debug message to be
printed, but I get none.

Have you declared your bundle activator in the manifest?
The framework knows which class to use as the bundle activator through the
Bundle-Activator entry in the manifest.

If you're using Maven to build your project, as described in this book, to assist you in
constructing the bundle OSGi headers, then the first thing to check is whether your bundle
activator class is declared in the maven-bundle-plugin configuration of the POM build
plugins section. Here's an example of the test.MyActivator activator:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <!-- ... -->
 <Bundle-Activator>test.MyActivator</Bundle-Activator>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Pitfalls and Troubleshooting

[264]

Are you updating the right bundle location?
In case you're not using the OBR service and instead have installed your bundle with a
direct URL using the install <URL> command, make sure that you're still deploying
to that same URL.

When a bundle is installed using a URL, the framework downloads it and keeps that location
for future updates. This location can be overridden by specifying a new location URL when
updating the bundle (refer to the section on the update command in Chapter 3, Felix Gogo).

In the case where the OBR service is used, the URL that is given to the bundle has an
obr:// scheme. When this URL is opened for updates, the open stream request is
intercepted and the newest compatible version of that bundle is loaded. However, when the
bundle is installed using, for instance, a file:// or http:// scheme URL, the same target
location is used every time.

If you've changed the bundle version after making those modifications, the deployed bundle
is now located at a different URL because the bundle version is typically part of the bundle
JAR name.

On Felix, you can find out the source location of a bundle by using the lb -l command
and flag.

If you are using the OBR to update your bundles, make sure you've refreshed the OBR before
you update the bundle! Use the repos refresh <url> command to instruct the OBR
service to get a fresh listing of the bundles deployed to that repository.

Have you refreshed the bundle dependencies?
This does not apply to private classes, that is, those that are visible and used only within
the bundle.

Classes that are accessible from other bundles, public classes that are in an exported
package, can be used by other bundles in the framework. If another bundle depends on
a package exported by your bundle and references one of those classes, there are cases
where this reference does not get updated.

To request the framework to update those references to exported packages, you use the
refresh command—either by refreshing all the bundles (without any parameters) or by
refreshing a selected set of bundles (refresh <id> . . .).

I refresh my OBR but the bundles don't get updated
I'm trying to use the OSGi Bundle Repository to update my bundle. I install and deploy my
bundle using the maven-bundle-plugin, but when I list the bundles in the OBR using the
obr:list command, my bundle doesn't show up.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Pitfalls and Troubleshooting

[266]

Using the BND tool
For more complex cases, it's recommended to use a tool to generate the manifest entries.
Luckily, such a tool exists.

The maven-bundle-plugin that we've used in this book as part of the build process is
based on the BND tool created by Peter Kriens (OSGi Technical Officer). BND is a powerful
tool that helps in creating and diagnosing OSGi bundles.

A more detailed set of documentation (as well as the download links) is available on the
tool's web page (http://www.aqute.biz/Code/Bnd).

The following instructions only target to solve the specific problem described here, but the
tool provides a larger set of useful features. The version of the BND tool available at the
writing of this is 0.0.384.

Let's take the example of the json JAR we worked with in Chapter 13. If you run the
following command:

java -jar bnd-0.0.384.jar wrap json-20090211.jar

The tool will analyze the contents of the JAR and generate json-20090211.bar—a new
archive that contains the modified manifest file.

Unzip the archive and take a look at the generated manifest:

Manifest-Version: 1.0
Export-Package: org.json
Bundle-Version: 0
Tool: Bnd-0.0.384
Bnd-LastModified: 1279997110578
Bundle-Name: json-20090211
Bundle-ManifestVersion: 2
Created-By: 1.6.0_10-rc (Sun Microsystems Inc.)
Import-Package: org.json;resolution:=optional
Bundle-SymbolicName: json-20090211
Originally-Created-By: 1.6.0_07 (Sun Microsystems Inc.)

Most of the legwork is already done for you; there's just a few additional steps to make it
complete. The previously highlighted lines show the entries to be modified:

Modify the Bundle-Version to be that of the artifact (in this case, 20090211).

Modify the Bundle-SymbolicName, removing the version from it. This will allow
a straightforward upgrade in the framework when a newer version of the artifact is
available. Optionally, you can also modify it to be fully qualified (org.json).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[267]

The following listing shows the updated manifest:

Manifest-Version: 1.0
Export-Package: org.json
Bundle-Version: 20090211
Tool: Bnd-0.0.384
Bnd-LastModified: 1279997110578
Bundle-Name: json-20090211
Bundle-ManifestVersion: 2
Created-By: 1.6.0_10-rc (Sun Microsystems Inc.)
Import-Package: org.json;resolution:=optional
Bundle-SymbolicName: org.json
Originally-Created-By: 1.6.0_07 (Sun Microsystems Inc.)

All that's left is to repackage the artifact, optionally changing its extension to .jar.

I get a "No impl service available" error with any shell command
I've installed a bundle using the obr:deploy command, which has failed for some reason,
but now I get an error message "No impl service available" for every command I run on
the shell.

Re-initialize the environment
This problem will occur if the install has caused the shell service to stop and it was unable
to start again. The easiest way to fix this is to reset the environment.

To reset the environment to the way it was initially, delete the bundle-cache directory.
You'll need to reinstall the bundles that you had added. For that, you can use a script such as
the one I have used in Chapter 8, Adding a Command-Line Interface.

I get a "No LogReaderService available" error with the log
command
I want to check the logs so I've tried the log command, but I'm getting a "No
LogReaderService available" error message:

g! log info

No LogReaderService available

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[269]

Do you need a proxy to access the Internet?
If your browser requires a proxy to access the internet, then so will the Bundle Repository
Service. You need to provide the proxy configuration to the framework. This can either be
done as a command-line directive using -D<prop>=<value> entries in the startup script,
or in the system.properties file under the conf directory.

The following are the property names that are used for proxy configuration:

http.proxyHost: The host name or IP address of the proxy server

http.proxyPort: The port of the proxy server

http.proxyAuth: The username and password to use when connecting to the
proxy server, separated by a colon (for example, myuser:mypass)

Check the Felix online configuration documentation for more details on this.

I'm getting a "Jsp support is not enabled" error message
I'm trying to start my web application bundle, but I get error messages about JSP support not
being enabled, like:

2010.06.22 19:10:12 ERROR - Bundle:com.packtpub.felix.bookshelf-webapp -

[ERROR] com.packtpub.felix.bookshelf.webapp.Activator :

[com.packtpub.felix.bookshelf.webapp.Activator-0]

The callback method validate has thrown an exception : Jsp support is not
enabled. Is org.ops4j.pax.web.jsp bundle installed? -

java.lang.UnsupportedOperationException: Jsp support is not enabled. Is
org.ops4j.pax.web.jsp bundle installed?

Did you install JSP support?
Check if the JSP extension for your selected Web Container implementation is installed. If
you're using Pax Web, then refer to Chapter 13 for the installation procedure.

My JSP can't find a class that it needs
I've written a JSP which imports a class that's in another bundle. The bundle with that class is
correctly installed on the framework, but my JSP is failing to compile; there's an error saying
that this class cannot be resolved to a type.

For example, here I have a JSP (index.jsp) that imports the class test.example.
ExternalClass:

<%@ page import="test.example.ExternalClass"%>

www.it-ebooks.info

http://www.it-ebooks.info/

Pitfalls and Troubleshooting

[270]

When attempting to access that JSP in a browser, after starting the web application bundle, I
get the error message:

Problem accessing /test/index.jsp. Reason:

 Unable to compile class for JSP:

An error occurred at line: 11 in the jsp file: /test/index.jsp

ExternalClass cannot be resolved to a type

Mainly, there are two potential reasons for this situation.

Is that class on an exported package?
Make sure that the bundle that's supposed to provide the class (here ExternalClass)
properly exports its package. The framework will only make classes in exported packages
available for other bundles.

To rule this potential root cause out, double-check the Export-Package manifest entry
in the bundle, that provides this class. It must include the package that contains the
class ExternalClass.

Does the web application bundle import the required class package?
If you're using the maven-bundle-plugin to generate the OSGi manifest entries, it will
look for the packages to include in the Import-Package manifest entry by inspecting the
Java sources. However, it will not look into JSPs to include the packages they import.

The packages required by JSP files need to be specified to be included as part of the
Import-Package manifest entry.

This is done in the plugin configuration section of the project POM:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <!-- ... -->
 <Import-Package>test.example,*
 </Import-Package>

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A
Eclipse, Maven, and Felix

Writing Java code can be fun with just a simple text editor like vi and javac
to compile, at times. However, when the project grows bigger than just a
few classes and starts having many dependencies, the need for an IDE, a
dependency management, and a build process system become a must.

A good selection of tools that integrate well with one another improves
the overall productivity while reducing the impact of human intervention
in repetitive, day-to-day processes, which can be automated.

In this appendix, we will go over a short introduction to those tools. Then we'll
look at a few ways to use Eclipse in the process of developing and testing Felix
bundles and the Maven project setup for building and packaging them.

It is not supposed to be a complete overview of how to use Eclipse or Maven; so
additional research and online reading will be required. However, it will give us
some basics to help us to get going. Some of the more experienced developers
will most probably just whiz through it looking for the main pointers.

In this appendix, you will learn how to:

Extend Eclipse with plugins that integrate it with Felix and Maven

Set up a new project using Eclipse and Maven

Configure the JVM launch options to set up a Felix framework for remote debugging

Configure Eclipse to connect to the standalone Felix as a remote debugger

Embed Felix into Eclipse

Debug bundles with an embedded Felix

www.it-ebooks.info

http://www.it-ebooks.info/

Eclipse, Maven, and Felix

[276]

Productivity tools
Using development tools speeds up the development cycle and reduces issues due to
manual intervention in the build process. They ensure that the correct dependencies are
available, the bundling contains the right descriptors, and that the bundles are deployed to
the expected target with the expected name. The build process becomes a simple exercise
that's automated by the selected tools.

The first two tools that a serious developer should invest time in selecting are a good IDE and
a build management system.

An Integrated Development Environment
An IDE is a software application that provides developers with a set of integrated
components that assist in the development activity. An IDE will provide source code
and resource editors frequently with contextual assistance on parts of the content and
integration with a build management system. Many also provide integration with source
code management and issue tracking systems.

There are many good IDEs for free! Take a look at the following:

Netbeans (http://www.netbeans.org/)

Eclipse (http://www.eclipse.org/)

Or you can just Google 'Java IDE' for a wide selection of choices for IDEs and build
management systems.

For this project, I've picked Eclipse as my IDE. Eclipse is an extensible application framework
(OSGi-based) with a rich feature-set and plugins. If you're interested, visit the Eclipse website
for more information (http://www.eclipse.org/).

A build management system
Build management systems assist in the build side of things, they help in automating many of
the repetitive tasks involved such as from the compilation of source code to the deployment
of the end result to a common location.

The main outcome of this automation is the ability to develop components following a
continuous integration strategy, whereby the different components of a system are unit
tested and integration tested as they are developed. In those setups, a close eye must be
kept on the automated integration and testing units.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[277]

One well-known build system is Apache Ant (http://ant.apache.org/), which allows the
description of the sequence of tasks to be performed to build a system in one or more xml
files; they act as build scripts.

I've picked Maven as the dependency management and build system (http://maven.
apache.org). In addition to allowing automation of the build, packaging, and deployment
of bundles with little configuration, it structures the build process in lifecycles and can be
extended with a rich selection of plugins (Maven is described in greater detail in Chapter 2,
Setting up the Environment).

Setting up Eclipse and plugins
Installing Eclipse typically consists of downloading the latest distribution and unzipping
it to a chosen location. Maybe then you can add a shortcut to its executable from a
convenient place.

There are a few Eclipse packages based on the core Eclipse functionality and bundled with
a selection of plugins that are mostly useful for a target application. For example, you'll
find distributions for C/C++, PHP, or Java EE developers.

I'm working with Helios for Java EE. It comes with a combination of plugins that is suitable
for a good range of Java development, and as all packages, it can be extended with a variety
of plugins for additional features.

The two additional plugins that we're using in this appendix are:

The m2clipse plugin (http://m2eclipse.sonatype.org/): It automates a lot
of the Maven project creation processes and also integrates with the "Run As..." for
Maven operations

The OSP4J Pax Runner plugin (http://paxrunner.ops4j.org/space/
Pax+Runner): It provides Eclipse launch configurations for major OSGi frameworks

Maven integration plugin
The integration of Maven with Eclipse is a great tool. It assists in the creation of new Maven
projects by doing the leg work involved in the construction of the directory structure. It also
configures the project to reflect its POM settings, adding JARs to the classpath, and so on.

Although I usually still prefer to use the mvn shell commands for the build, package, and
deploy cycles of the main releases. The m2clipse plugin integration points with Maven
provide hooks into the build cycle phases for quick test cycles between releases.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[281]

Accept the terms of the licenses and finish the install. Once the installation is complete,
restart Eclipse (if requested). If all went well, this set of plugins is now installed and you
should be ready to use it to set up embedded OSGi platforms such as Felix.

To double check that your plugins are indeed installed, you can inspect the current
installation through the Help -> About Eclipse menu sequence.

Installing m2clipse
Follow the previous procedure to install the m2clipse plugin, using the following update
site details:

Update site name to m2clipse Update Site

Update site URL to http://m2eclipse.sonatype.org/sites/m2e/

For the m2clipse install, you select the one provided plugin. For reference, the installation
procedure can be found at the m2clipse site (http://m2eclipse.sonatype.org/
installing-m2eclipse.html).

Setting up a new Maven project in Eclipse
In this example, we will use the Bookshelf Inventory Impl - Mock bundle from Chapter 5, The
Book Inventory Bundle, showing the parts that are specific to Eclipse and the m2clipse plugin.

A lot of what you'll see here relating to Maven is exactly the same as what you've seen in
Chapter 5. The only difference is that the project contents are edited in Eclipse. We will
mainly focus on the specifics around the setup and operation in the Eclipse environment.

If you already have the project setup, as described in Chapter 5, to add it to Eclipse, follow
the steps in the upcoming Importing a Maven project into Eclipse section.

Creating the Maven project
At this point, Eclipse is open in Java perspective, with the m2clipse plugin installed and
configured. We will now create a new Maven project in Eclipse. Let's quickly go through
the project creation steps.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[289]

Remote debugging configuration
Remote debugging is much simpler than most people think. Basically, when starting the
application, we ask the JVM to start listening on a port so that we can connect to it later.
Then we connect using a Java IDE and control the JVM's execution flow.

This allows us to stop the processing and peek into variables and attributes, or inspect the
execution flow by stepping through the different method calls.

Setting up the remote application
First we need to tell the JVM to start the Felix framework in the remote debug mode. This is
done through a set of command-line parameters passed to the Java application.

Time for action – editing the Felix run script
If you had created a startup script for Felix, now it's the time to make it allow remote
debugging. The following shows the updated startup script enabling remote debugging
of the Felix framework:

java
 -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n
 -Xdebug
 -jar bin/felix.jar

We tell the JVM to start in the debug mode; the set of options added to the command
line will enable debugging and instruct the JVM to listen to the port 8787 for debug clients
to connect.

The suspend option controls whether the JVM should halt at start and wait for a client to
connect before continuing, or whether it should just start while listening for an eventual
client connection. In our case, we've set suspend=n because we're not interested in
capturing the startup of the framework. You may need to change it to y if you'd like
to debug bundle activation as part of the framework startup procedure.

Launching Felix with remote debugging turned on displays something like:

Listening for transport dt_socket at address: 8787

Welcome to Apache Felix Gogo

g!

The JVM is now running and waiting, listening to port 8787 for a remote debugger
to connect. This won't take too long to happen; we're going to connect our client
debugger next.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Eclipse, Maven, and Felix

[298]

Summary
Here, we looked at additional ways to improve productivity by using tools such as a build
and dependency management, and an Integrated Development Environment extended
with useful plugins. We also learned how to debug a Felix environment remotely and by
embedding it into an IDE.

By now, you should know how to do the following:

Configure Eclipse for use with Maven and with Felix

Create a bundle Maven project in Eclipse

Launch the Felix framework for remote debugging

Set up Eclipse to remotely connect to it

Set up Felix as an embedded framework in Eclipse using Pax Runner

Launch the embedded framework either in the Run or in the Debug mode

www.it-ebooks.info

http://www.it-ebooks.info/

B
Where to Go from Here?

I hope you've enjoyed reading this book and have learned enough of the
basics to drive yourself to follow the fast-paced OSGi evolution. This appendix
attempts to motivate you further by introducing some of the slightly more
advanced topics you could follow through as the next steps.

One of the interesting aspects of the development of an OSGi service
platform you should have understood is that you're not bound to a specific
implementation provider: an OSGi-compliant bundle runs on an OSGi compliant
service platform.

This appendix suggests a few other topics that should be at a close reach, with
a good understanding of what's been learned here.

In this appendix, we will take a few brief overviews:

On other admin consoles

On declarative services

On persistent storage

On web services

On Java Management Extensions (JMX)

On other topics, a collection of other interesting leads to follow

Of course, those are not intended to be full introductions, but should give you enough
keywords and concepts to follow on and research on your own.

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Go from Here?

[300]

On declarative services
We've briefly mentioned OSGi Declarative Services in Chapter 1, Quick Intro to Felix and
OSGi, without going into the details. The provided functionality helps with the process of
publishing, binding, and finding of services. It also handles service dependencies.

In this book, we've looked at iPOJO to assist us with this task. It's an alternative to Service
Component Runtime of OSGi declarative services in that it provides similar functionality
through different means.

Declarative services define the service components, their properties, and references to other
services, using an XML descriptor kept in the bundle's OSGI-INF directory and referenced
from a manifest header (instead of it being encoded completely into a header, as we saw
with iPOJO).

Refer to the Felix Service Component Runtime bundle and its documentation at http://
felix.apache.org/site/apache-felix-service-component-runtime.html.

Another available alternative to OSGi Declarative Services to do some research on is that
proposed by Spring Dynamic Modules, which introduces Blueprint Service specification.

On persistent storage
A next good skill to learn would be how to add persistence to the data used by a service.
For example, in the case study we implemented here, a persistent storage service would
allow us to keep the Book data entries between platform restarts. It would also allow us
to significantly improve search performance.

Generally, there are a few available choices for storage; the selection of the one to use
depends a lot on the application's requirements.

For example, in scenarios where fast and frequent reads are needed with relatively
infrequent writes that are allowed to be slower, then a good choice would be a Java Naming
and Directory Interface (JNDI) service connection to a naming directory provider (LDAP, DNS,
and so on). This choice is especially useful when this data needs to be read by distributed
remote parties (for example, user authentication services).

In scenarios where complex searches and frequent updates are required, a relational
database could be a better choice, using a Java Database Connectivity (JDBC) service
connected to relational database (Oracle, MySQL, or HSQLDB, to name a few), or using
a persistence framework (like Hibernate).

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[301]

While looking at implementing persistence, you must also keep an eye on the potential
need for transactionality of persistence operations. Transactional operations are a set of
operations that are considered as a group, whereby the changes in the group are committed
if all the operations in the group succeed, but they are all rolled back if one of them fails.
A good place to start with this is by reading about the Java Transaction API (JTA).

On web services
As you require your application to be open for sharing and information within a network
of components, in a Web 2.0 fashion, you'll want to integrate technologies such as web
services, REST-based information publishing, and so on.

A good place to start your investigation on how to integrate the web services functionality
to your applications is to look at Apache's CXF distributed OSGi sub-project, which
implements the OSGi Remote Services specification (Chapter 13 of the OSGi 4.2
Compendium Specification), as well as the OSGi Remote Service Admin specification
(Chapter 12 of the OSGi 4.2 Enterprise Specification).

Apache CXF Distributed OSGi service provides access to your services through SOAP over
HTTP (by means of a WSDL description), as well as through JAX-RS, among potential others.
Using a bundle activator to expose a web service using CXF boils down to registering the
service along with a set of dictionary properties.

Alternately, you may also want to look at using Spring Web Services or embedding Axis2 in
your service platform to provide the web services' functionality.

On Java Management Extensions (JMX)
In a distributed environment, managing applications remotely and gathering performance
statistics is an important factor in simplifying the overall system administration. Java
Management Extensions (JMX) have become a standard in achieving those tasks.

The OSGi Service Platform Enterprise Specification specifies a JMX Management Model
(section 124), which defines an API for controlling the framework as well as simple means to
exposing bundles and services.

At the point of writing of this book, the Managed OSGi framework (MOSGI) Felix sub-project
is not yet released. However, it is an interesting project to keep an eye on (or contribute to) its
progress. It provides, through JMX, functionalities such as:

Infrastructure management

Deployment of probes for gateway monitoring

Gathering of log entries and alarms

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Go from Here?

[302]

It also provides an extensible graphical management console.

There are also other available providers of JMX probes and monitoring agents; a quick
Google search will point you in the right direction.

Additional topics
This section gathers a few additional topics that are interesting to look at in the context of
OSGi development:

For developing more advanced web applications, consider looking into the
development of Google Web-Toolkit (GWT) applications on an OSGi service
platform. With the knowledge base you've picked up here, you should be able
to move onto that with little trouble.

Universal plug-and-play (UPnP) is part of the OSGi specification base. UPnP
specification-compliant services can interact with UPnP devices, control them,
and potentially download and manage code on remote systems. Applications can
range from interaction with a printer or TV to acquisition of images from
a webcam, controlling lights, shades or heating in the home.

If you're interested in mobile development, you can also check out the work that's
been done on embedding the Apache Felix framework on Google Android. Bundles
you develop on Felix can be transformed for the Android using a set of tools in a
relatively straightforward manner (check http://felix.apache.org/site/
apache-felix-framework-and-google-android.html).

All that we have seen is a very short list of the world of opportunities that lay before you.

Summary
The applications of OSGi are in continuous evolution. New and creative uses of the flexibility
it allows are discussed and published frequently.

In this last appendix, we've looked at some additional paths you can follow in extending
your knowledge in OSGi and some potential leads to enrich the functionality your
application features.

www.it-ebooks.info

http://www.it-ebooks.info/

C
Pop Quiz Answers

Chapter 1: Quick intro to Felix and OSGi

1 c A bundle is a regular Java archive (JAR) augmented with additional OSGi-specific
headers in its manifest. Refer to the sections Anatomy of a bundle and The OSGi
headers for a review.

2 b The OSGi headers are used to tell the framework about the bundle, its identification
information, the packages it requires, and those that it provides. Refer to the
section The OSGi headers for a review.

3 b Setting the active start level to 3 makes the framework first stop the bundles on
start level 4, then change the active start level. Refer to the section Start levels for
a review.

Chapter 2: Setting up the Environment
1 b A life-cycle defines a sequence of phases, the execution of which achieves

purposes such as releasing a bundle or generating documentation for it.

2 c The POM is an XML file associated with a project and used by Maven in making
decisions on how to build it.

www.it-ebooks.info

http://www.it-ebooks.info/

Pop Quiz Answers

[304]

Chapter 3: Felix Gogo

1 b The lb command is used to list the installed bundles in Gogo.

Note: ps was used in previous versions, when the Felix Shell TUI was the default
Felix Framework Distribution shell.

2 c stop 0 will request a stop of the system bundle leading to the framework
shutdown. Note: shutdown was used in previous versions, when the Felix Shell
TUI was the default Felix Framework Distribution shell.

Chapter 5: The Book Inventory Bundle

1 c There is no need for OSGi-specific interfaces. Review The Book bean interface
section.

2 b Having configured the project packaging, maven-bundle-plugin, and the
distributionManagement in the project POM, Maven will deploy the bundle
and update the repository descriptor when you include the deploy target.

3 b Implementing a BundleActivator (and declaring it in the bundle manifest) will
give you access to the BundleContext during the start and stop of the bundle.
The context can be used to register a service.

Chapter 6: Using the OSGi Bundle Repository

1 b OSGi does not apply any constraints on the naming or storage structure of
bundles. The OBR specification provides a service interface definition for querying
bundle repositories and an XML file structure for repositories.

2 b The OBR service is configured with access to a set of repositories, which it will
inspect to find unfulfilled dependencies, and installs them.

3 c Although answer b is not wrong, the same effect can be achieved in one
operation using the obr:deploy command with the -s flag.

4 c The Felix Maven Bundle Plugin attaches to the deploy phase goals and updates
the repository XML file.

Note: Answer b is not wrong, but it is not recommended because it is manual and
thus error prone.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

[305]

Chapter 7: The Bookshelf: First Stab

1 c Review the section on bundle states in Chapter 1.

2 c a and b; the activator's start() method is called when the bundle is starting and
its stop() method is called when the bundle is stopping.

Chapter 11: How About a Graphical Interface?

1 b The service locator pattern consists of requesting one or more instances of a service
through a registrar component.

2 d Although option c is the simplest one that is used in this book, all of the options
accomplish the same effect.

Chapter 13: Improving the Graphics

1 a A Web Container extends an Http Service with web application features. Refer to
the beginning of this chapter.

2 b JSPs, just like servlets, have access to a servlet context. In the context of OSGi, the
context contains the BundleContext mapped to the osgi-bundlecontext
attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
-a (--append option) 56
-i (--ignore-case) option 55
-n (--line-number) option 55
-q option (--quiet or --silent) option 55
-s (--start) flag 106
-v (--verbose) flag 104
-x (--extract) flag 107
@Component annotation

about 181
immediate annotation 181
name attribute 181

@Descriptor annotation 138
@Instantiate annotation 182
@Property annotation

about 182
mandatory attributes 182
name attributes 182
value attributes 182

@Provides annotation
about 181
strategy attribute 181

@Requires annotation
about 181
nullable attribute 181
optional attribute 181

@ServiceProperty annotation
@Property annotation, difference 182
about 182
mandatory attribute 182
name attribute 182
value attribute 182

A
activation sequence

flow diagram 225
activator class 178
addBook() method 203
add command

about 150
trying 151, 152

alias property 216
annotations, iPOJO

@Component 181
@Instantiate 182
@Property 182
@Provides 181
@Requires 181
@ServiceProperty 182
annotated components, instantiating 182
overview 180

Apache
Felix Gogo Shell Service 134

Apache Felix
about 21
sub-projects 22

Apache Felix Gogo Shell Service
about 134
Bookshelf Service TUI bundle, creating 134

Apache Felix iPOJO WebConsole Plugin 236, 237
Apache Felix Log Service

about 196
log command 197
system property values, setting 196, 197

arch. See Felix iPojo Gogo Command bundle

www.it-ebooks.info

http://www.it-ebooks.info/

[�0�]

B
BND tool 266
book:add command

about 147
bundles, rebuilding 148
implementing 147

book:finished 152
book:get command 152
book:remove 152
book:search command

BookshelfServiceProxy, writing 137-141
converters 141
implementing 136
required dependencies, adding 136, 137
trying out 144

book:started 152
Book bean, attributes

Author 79
Category 79
Category attribute 79
ISBN 79
Rating 79
Title 79

Book bean interface
about 79
API, personalizing 80, 81
attributes 79
creating 80

Book Inventory API Bundle project
about 72
build, customizing 77, 78
building 84, 85
bundled versions 74-76
Bundle identity 73
compatibility examples 76
dependencies 76
deploying 84, 85
distribution parameters, defining 78
pom.xml file, creating 73
skeleton, setting up 72

book inventory bundles, installing to Felix
about 108
steps 108, 110

Book Inventory interface
about 81
writing 82, 83

BookInventory interface, implementing
about 85
book, storing 89
book search, implementing 91-93
factory method 88
mock Book Inventory, implementing 88
mock getGoups(), implementing 89
MutableBook, implementing 87
POM, creating 85, 87
stored book, loading 90
stored book, removing 90

BookInventoryMockImplActivator class 171
bookshelf-service-tui

BookshelfServiceProxyImpl, updating 183, 184
file based bookshelf inventory, implementing

186
iPOJO meta.xml, writing 184
POM, updating 185, 186
updating, for annotation usage 186

bookshelf-servlet
about 214, 215
doGet() method, implementing 217
implementing 215
iPOJO configuration 216
operations, implementing 218-223
parameter constants, declaring 217, 218
remaining operations, implementing 223

bookshelf-webapp
about 243
creating 244
testing 252

Bookshelf project
bundles 68
business logic tier 62
conventions 67, 68
diagrammatic structure 60
first tier 60
second tier 60
third tier 60
user interaction tier 63

BookshelfService
checking 179
deploying 179
migrating 175
bundle, building 126-128, 131
installing 126-128
logging, adding 201

www.it-ebooks.info

http://www.it-ebooks.info/

[�0�]

missing dependency, fulfilling 129
testing 126-128

BookshelfService, migrating
POJO configuration 177
POM, updating 177, 178
service implementation lookups, removing 175,

176
Bookshelf Service bundle

about 113
activator 115
bundle identification 114, 115
interface, defining 115
Java packages 114
preparing 114
project dependencies 114

BookshelfServiceImpl class 201
Bookshelf Service interface

APIs, writing 116
authentication interface 116
BookshelfServiceImpl, writing 120, 121
BookshelfService interface 116-118
enriching 118
implementing 119

BookshelfServiceProxy class 147
browseByCategoryUrl() method 221
build management system

about 276
Apache Ant 277
Maven 277

bundle
about 10
anatomy 15, 16
working with 15

Bundle-ActivationPolicy 17
Bundle-Activator class 17
Bundle-Category header 18
Bundle-ContactAddress header 18
Bundle-Description header 18
Bundle-Name header 18
Bundle-Version header 17
bundle activator

bundle activator BundleContext 96
creating 95
declaring 97
dependency, adding to OSGi Core library 94
writing 94

bundlelevel command 53

bundle lifecycle states, OSGi framework
about 12
ACTIVE 13
diagrammatic representation 13
INSTALLED 13
RESOLVED 13
STARTING 13
STOPPING 13
UNINSTALLED 13

Bundle object 39
bundles command 36
bundles statement 36
bundle wiring

about 13
diagrammatic representation 14

business logic tier
about 62
data inventory 63

C
cat command 55, 56
cd command 50, 52, 153
checkIntegerGreater method 93
checkIntegerSmaller method 93
checkSession() method 203
checkStringMatch method 93
common pitfalls

about 262
artifact JAR, without OSGi entries 265-267
bundle, creating manually 265
BundleActivator implementation 262, 263
bundle dependencies, refreshing 264
bundle updation changes, viewing 263, 264
JSP access error 269
Jsp support is not enabled error 269-271
Log Service installation, checking 268
No impl service available error 267
No LogReaderService available error 267
OBR addition error 268, 269
OBR connection error 268, 269
remote OBR, updating 264, 265
right bundle, updating 263, 264

converters, book:search command
about 141
bookshelf-service activator, cleaning up 146
bundle activator, implementing 142, 143

www.it-ebooks.info

http://www.it-ebooks.info/

[�10]

installing 143-146
packaging 143-146

Core Specification
about 8
Enterprise Specification 9
Service Compendium 9

Create-Retrieve-Update-Delete. See CRUD
createBook method 82
CRUD 61

D
data inventory tier

Book interface 61
BookInventory interface 61
CRUD 61
MutableBook interface 61
need for 61

debugging, Eclipse used
embedded Felix, running 294
Felix, remote connection 292
remote debugging configuration 289

declarative service 300
dependency injection pattern, IoC

about 159
setup 160

dependency management 110
doGet() method 217
dollar character ($) 37
doThat() method 74

E
E-Health market 9
echo command 54
Eclipse

debugging 288
integrating, with Maven 277
Maven project, importing 286, 287
new Maven project, setting up 281
OSGi framework container plugin 278
plugins, installing 279
setting up 277
workspace, choosing 278, 279

embedded Felix
configuring 294, 295
debugging 297
OBR repositories, adding 296

running 294
test bundle, testing 296, 297
testing 295, 296

Enterprise ARchive (EAR) 10
equal character (=) 38
Equinox (Eclipse) 8
Execution Environment layer, OSGi

framework 10
Export-Package header 17
Extender pattern, IoC

about 161
diagram 162

F
Felix

about 8, 65
book inventory bundles, installing 108

felix:install command 108
felix:update <id> command 108
felix:update command 108
Felix, remote connection

breakpoint, setting 293
remote debugger, starting 293, 294
steps 292

Felix distribution, directory structure
bin 28
bundle 28
conf 28
doc 28
felix-cache 28

Felix documentation pages
URL 36

Felix framework, setting up
about 25
Felix distribution, downloading 27
Felix distribution, unpacking 27
JDK installation, verifying 26, 27
launching 28, 29
operations 29, 30

Felix Gogo 35
Felix iPOJO Gogo Command bundle

about 173
ipojo scope, command usage 174

Felix Maven plugins
Bundle plugin 32
iPOJO plugin 33

www.it-ebooks.info

http://www.it-ebooks.info/

[�11]

junit4osgi plugin 33
SCR plugin 33

Felix project
about 22
Configuration Admin Service specification im-

plementation 22
Event Admin Service specification implementa-

tion 22
Http Service specification implementation 22
Log Service specification implementation 22
Metatype service implementation 22
Preferences service implementation 22
Service Component Runtime 22
services 22
UPnP Device service implementation 22

felix scope commands
about 42
bundlelevel command 53
cd command 51
frameworklevel command 52
headers command 47, 48
help command 40, 42
inspect command 47, 48
install command 43
list bundles command (lb) 40
log command 50
ls command 51
refresh command 46, 47
resolve command 45
start command 45
stop command 45
uninstall command 46
update command 44
which command 49, 50

finishedBook() method 118
Fragment-Host header 17
frameworklevel command 52
functional headers

about 17
Bundle-Activator header 17
Bundle-RequiredExecutionEnvironment 17
Bundle-Version header 17
Export-Package header 17
Import-Package header 17
Require-Bundle header 17

functional layers, OSGi framework
about 10

diagrammatic representation 11
Execution Environment layer 10
Lifecycle layer 10
Module layer 10
Security Layer 11
Service layer 11

G
getBooks() method 140
getBookshelf() method 248
getCategories method 82
getDataFile() method 187
getLocation() 39
getNotStartedBooks() method 118
getUnfinishedBooks() method 118
Gogo 22
gogo scope commands

about 42
cat command 55
echo command 54
grep command 54
set command 57, 58
tac command 56

Gogo Shell Service command
implementing 135, 136
osgi.command.function, service properties 135
osgi.command.scope, service properties 135

Google Web-Toolkit. See GWT
Graphical User Interface. See GUI
grep command 36, 39, 54
grep statement 36
GUI 227
GWT 302

H
headers command 47
help command 40, 42
htmlCategories() method 220

I
IAM 278
IDE

about 66
Eclipse 276
Netbeans 276

www.it-ebooks.info

http://www.it-ebooks.info/

[�1�]

Import-Package header 17
information headers

about 18
Bundle-Category header 18
Bundle-ContactAddress header 18
Bundle-Description header 18
Bundle-Name header 18

initialize() method 248
injected Plain Old Java Objects. See iPOJO
inspect command 47

inspection direction 49
inspection type 48

install <URL> command 264
install command 43
installed bundle

updating 148-151
installing

Maven2 30
Integrated Development Environment. See IDE
Integration for Apache Maven. See IAM
International Standard Book Number. See ISBN
inventory implementation registration, iPOJO

building 172
bundle, configuring 171
iPOJO metadata, creating 170
POM, updating 170, 171
testing 172

Inversion of control. See IoC
IoC

about 158
dependency injection pattern 159
Extender pattern 161
Service Locator pattern 159
Whiteboard pattern 161

iPOJO
about 163
annotations, using 180
component 163, 164
Eclipse plugin 167
functional relationship 163
injecting 168, 169
instance 163, 164
inventory implementation, registering 169
Maven plugin 164
service bundle, installing 169
Whiteboard Extender 212

ipojo:instances Gogo command 237
iPOJO Eclipse plugin 167
iPOJO Maven plugin

about 164
metadata file 164, 165
metadata file, component element 165, 166
metadata file, instance element 166, 167
using 167, 168

ISBN 79

J
Java™ Development Toolkit. See JDK
Java ARchive (JAR) 10
Java Database Connectivity. See JDBC
Java Management Extensions. See JMX
Java Naming and Directory Interface. See JNDI
Java Platform Debugger Architecture. See JPDA
Java Server Pages. See JSP
Java Transaction API. See JTA
JDBC 300
JDK 26
JMX

about 299, 301
functionalities 301

JNDI 300
JPDA 288
JSP 65
JSP imports

about 255
application, extending 258
explicit package imports 256
new book, adding 257, 258
searchAuthors.action.jsp page 256, 257

JTA 301

K
Knopflerfish 8

L
Lifecycle layer, OSGi framework 10
list bundles command 40
loadBookForEdit method 82
loadBook method 83
log command 50

www.it-ebooks.info

http://www.it-ebooks.info/

[�1�]

logging
about 189, 190
adding, to bookshelf-service 201
levels 190
trying out 205, 207

logging, adding to BookshelfService
about 201
bookshelf-service-tui dependency, updating

204
BookshelfLogHelper, logging into 203, 204
bundle POM, updating 201
calls, updating 202
remaining logs, adding 205

logging implementation
Apache Sling 208
Eclipse Equinox Log Service 208
Pax Logging 208

logging levels
APIs 191
DEBUG 190
ERROR 190
INFO 190
logs, dealing with 191, 192
WARNING 190

log helper bundles
bookshelf-log-api bundle, creating 198, 199
BookshelfLogHelper service, implementing

200, 201
defining 198
log helper implementation, creating 199, 200

LogService method 200
lookupBookInventory method 121

framework service lookup 123-125
implementation, completing 121, 122
service activator, implementing 122, 123

lookupService() method 139
ls command 50, 52

M
m2clipse plugin 277
Managed OSGi framework. See MOSGI
mandatory headers 16
Maven2

about 30
default build life-cycles, example 31
installing 30

life-cycle 31
phases 31
plugins 32
POM 32

Maven bundle plugin 23
Maven project import, into Eclipse

steps 286-288
Maven project setup, in Eclipse

build process, customizing 285
completing 286
creating 281-285

Maven SCR plugin 23
method

addBook() 203
checkSession() 203
getBookshelf() 248
initialize() 248
LogService 200
lookupBookInventory 121
methodbrowseByCategoryUrl() 221
methodcheckIntegerGreater 93
methodcheckIntegerSmaller 93
methodcheckStringMatch 93
methodcreateBook 82
methoddoThat() 74
methodgetBooks() 140
methodgetCategories 82
methodhtmlCategories() 220
methodloadBook 83
methodlookupService() 139
methodregisterService 95
method removeBook 83
methodsearchBooks 83
methodstoreBook 82
methodtoString() 88
registerJsps() 245
testService() 125

Mobile market 9
Module layer, OSGi framework 10
MOSGI 301

O
OBR

about 99
dependency management 110
elements 100

www.it-ebooks.info

http://www.it-ebooks.info/

[�1�]

Gogo command bundle 100
OBR bundle 100
OBR service 100
OSGi repositories 100
repository, updating 103
repository XML Descriptor 101, 102

obr:deploy command 106, 267
obr:info command 105
obr:javadoc command 107
obr:list command 104
obr:refresh command 107
obr:repos command 103
OBR:scope commands 103
obr:source command 107
obr add-url command 296
obr deploy command 127
obr scope commands 42
Open Participation Software for Java. See OPS4J
OPS4J 240
OSGi

about 7, 8
benefits 8
E-Health market 9
Mobile market 9
overview 8
Smart Home market 9
Telematics market 9
Web Containers 240

osgi-bundlecontext attribute 247
OSGI-INF/ directory 16
OSGi Bundle Repository. See OBR
OSGi Bundle Repository Service 23
OSGi development

GWT 302
UPnP 302

OSGi framework
about 10, 35
bundle lifecycle states 12
bundle wiring 13
functional layers 10
start levels 18

OSGi headers
about 16
functional headers 17
information headers 18
mandatory headers 16

OSGi HTTP Service
about 209, 210
component, structure 210, 211
implementations 213
servlets registration 211, 212

OSGi HTTP Service implementations
about 213
Apache Felix Http Service 213
Apache Felix Http Service, features 213
Apache Felix Http service, installing 214

OSGi Log service
about 192, 193
Log Service interface 193
Log Service usage 194
Service end 193, 194
service provider end 195, 196

OSGi service platform
Core Specification 8
framework layout 10

OSGi Web Containers 240

P
PATTERN argument 54
Pax Web bundles

about 240
http service implementation, double-checking

242, 243
installing 241, 242
previous http support, uninstalling 241

plugin installations, for Eclipse
about 279
m2clipse, installing 281
OSP4J Pax, update site details 280
Pax Runner, installing 279-281

plugins
m2clipse plugin 277
OSP4J Pax Runner plugin 277

POM
about 32, 73, 283
POMdependencies 76

pop quiz 58
procedure investigation, installing

commons-fileupload, installing 229
commons-io installing 229
json, installing 229, 230
mandatory dependencies 228

www.it-ebooks.info

http://www.it-ebooks.info/

[�1�]

optional dependencies 228
web console, installing 231
web console, starting 231

productivity tools
about 276
build management system 276
IDE 276

Project Object Model. See POM
proxy configuration, property names

http.proxyAuth 269
http.proxyHost 269
http.proxyPort 269

R
refresh command 46, 47, 264
REGISTERED event 225
registerJsps() method 245
registerService method 95
regular expression (regex) 54
remaining pages, implementing

JSP imports 254
list book by category, implementing 253, 254

remote debugging configuration
Felix run script, editing 289
IDE, configuring 290-292
remote application, setting up 289

Remote Shell Service 23
removeBook method 83
repos refresh command 148, 151
Require-Bundle header 17
resolve command 45

S
scope commands, OBR

bundles, updating 107
obr:deploy 106
obr:info 105
obr:javadoc 107
obr:list 104
obr:refresh 107
obr:repos 103, 104
obr:source 107

scripts
about 153
book population script, creating 153-155

searchBooks method 83
search command

about 152
syntax signatures 138

Security Layer, OSGi framework 11
service data

persistence, adding 300
Service layer, OSGi framework 11
Service Locator pattern, IoC

about 159
framework 159

service reference, in JSP
authentication pages, completing 249, 250
obtaining 247, 248
service, using 251
SessionBean class, writing 248, 249

services, Felix project
dependency manager 22
file install 22
Gogo 22
iPOJO 23
Maven bundle plugin 23
Maven SCR plugin 23
OSGi Bundle Repository Service 23
Remote Shell Service 23
Shell Service 23
Shell TUI 23
Web Console Service 23

SessionBean class 248
set command 57
shared service registry 14, 15
Shell Service 23
Shell TUI 23
Smart Home market 9
source command 153
start() method 110
start command 45, 46
startedBook() method 118
start levels, OSGi framework

about 18
active start level 18, 19
implementing 20, 21
Start Level Service 18

stop command 45
storeBook method 83

www.it-ebooks.info

http://www.it-ebooks.info/

[�1�]

T
tac command 56, 57
Telematics market 9
testService() method 123, 125
the OSGi 4.2 early draft appendix

URL 36
Tiny Shell Language (TSL)

about 36
chained execution 36, 37
commands 39
execution quotes 38
object properties 38
referencing 37
scopes 39
syntax 36
value types 37, 38
variable assignment 37

toString() method 88
troubleshooting tips

about 271
answers, obtaining online 272, 273
debug logs, obtaining from Felix Log Service

271
remote debugging 272

U
uninstall command 46
Universal plug-and-play. See UPnp
update command 44, 149, 263
UPnP 302
user interaction tier

bookshelf-service-tui bundle 64
bookshelf-servlet bundle 64
console text user interface 63
web-based graphical interfaces 64

W
WABs 240
WARs 66
web application

about 245
dependencies, specifying 246, 247
setting up 245, 246

Web Application Bundles. See WABs
Web Archives. See WARs
Web Console Service 23
Web Management console

about 228
Apache Felix iPOJO WebConsole Plugin 236,

237
Bundles tab 232, 233
Log Service tab 233
OSGi Repository tab 234
overview 231
procedure investigation 228
Services tab 234, 235
System Information tab 236

web services
integrating 301

which command 49
Whiteboard Extender

iPOJO 212
Whiteboard pattern, IoC

using 161

X
xtrace option 57

www.it-ebooks.info

http://www.it-ebooks.info/

	Team rebOOk

